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Abstract—This paper addresses the channel estimation
problem for beyond diagonal reconfigurable intelligent surface
(BD-RIS) from a tensor decomposition perspective. We first show
that the received pilot signals can be arranged as a three-way
tensor, allowing us to recast the cascaded channel estimation
problem as a block Tucker decomposition problem that yields
decoupled estimates for the involved channel matrices while
offering a substantial performance gain over the conventional
(matrix-based) least squares (LS) estimation method. More
specifically, we develop two solutions to solve the problem. The
first one is a closed-form solution that extracts the channel
estimates via a block Tucker Kronecker factorization (BTKF),
which boils down to solving a set of parallel rank-one matrix
approximation problems. Exploiting such a low-rank property
yields a noise rejection gain compared to the standard LS
estimation scheme while allowing the two involved channels
to be estimated separately. The second solution is based on
a block Tucker alternating least squares (BTALS) algorithm
that directly estimates the involved channel matrices using an
iterative estimation procedure. We discuss the uniqueness and
identifiability issues and their implications for training design.
We also propose a tensor-based design of the BD-RIS training
tensor for each algorithm that ensures unique decoupled channel
estimates under trivial scaling ambiguities. Our numerical results
shed light on the tradeoffs offered by BTKF and BTALS methods.
Specifically, while the first enjoys fast and parallel extraction of
the channel estimates in closed form, the second has a more
flexible training design, allowing for a significantly reduced
training overhead compared to the state-of-the-art LS method.

Index Terms—Beyond diagonal reconfigurable intelligent
surfaces, channel estimation, tensor decomposition, alternating
least squares, Kronecker factorization.

I. INTRODUCTION

As a new advance of conventional reconfigurable intelligent
surface (RIS) techniques with diagonal phase shift matrices
[1], [2], beyond diagonal (BD) RIS has been recently proposed
and theoretically proved to achieve enhanced channel gain
and enlarged coverage [3]–[5]. The benefits of BD-RIS are
enabled by interconnecting elements via additional tunable
components to mathematically generate scattering matrices
with nonzero off-diagonal entries, increasing flexibility to
manipulate waves. The fundamental modeling and architecture
(group/fully-connected) design of BD-RIS based on the
circuit topology has been first studied in [6]. Following [6],
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other architectures (forest/tree-connected) with reduced circuit
complexity yet satisfactory performance have been proposed
based on the graph theory [7]. In [8], a frequency-dependent
model is proposed to optimize a BD-RIS architecture for
multi-band MIMO networks. Meanwhile, to enlarge the
coverage, BD-RIS with hybrid transmissive and reflective
mode and multi-sector mode have been proposed based on
the antenna array arrangement [3].

It is worth noting that the enhanced performance of BD-RIS
architectures and modes depends highly on the accuracy of
the channel state information (CSI). However, it is difficult to
effectively and efficiently acquire the CSI for BD-RIS-aided
wireless systems for the following reasons. First, since
the BD-RIS is nearly passive without the ability to sense
signals, a straightforward strategy is to estimate the combined
channel constructed by the transmitter-RIS and RIS-user
channels, as well studied in conventional RIS literature
[9]–[11], [12], [13]. This strategy relies on the pre-design of
BD-RIS for pilot training, while each BD-RIS architecture
leads to unique mathematical constraints of the scattering
matrix, which indicates that the design for conventional
RISs does not work for BD-RIS architectures. Second,
each BD-RIS architecture leads to unique constructions of
the combined channel with increasing dimensions, which
requires additional training overhead to obtain the CSI.
To solve the above two challenges, one recent work [5]
has proposed a closed-form solution based on the least
squares (LS) estimation to pre-design the BD-RIS with
group/fully-connected architectures. Nevertheless, there are
two limitations in [5]. First, the combined CSI is obtained at
the cost of a large training overhead, which grows heavily with
the circuit complexity of BD-RIS architectures. Second, the
built-in block Kronecker structure of the combined channel is
ignored, which could be further exploited to facilitate channel
estimation. Thus, estimating the BD-RIS-aided channels with
high accuracy and low training overhead remains an important
yet challenging open problem.

To address the above limitations, this paper studies
channel estimation for BD-RIS via a tensor decomposition
perspective. Tensor methods have been successfully exploited
in different knowledge areas, including signal processing and
machine learning, as well as in wireless communications
and multi-sensor processing (see [14]–[18] and references
therein). Recently, tensor modeling has also found applications
in RIS-assisted communications [19]–[23]. Here, we derive
efficient channel estimation methods for BD-RIS that leverage
the tensor decomposition structure of the received pilots to
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provide accurate CSI acquisition of each individual channel
while operating at low training overheads. Specifically, we first
show that the combined channel for BD-RIS can be formulated
as a (block) Tucker tensor decomposition. Then, decoupled
estimates for the involved channel matrices can be obtained
by exploiting the different unfoldings of the received pilot
tensor. We develop two solutions to solve this problem. The
first one is a closed-form solution that extracts the individual
channel estimates via a block Tucker Kronecker factorization
(BTKF), which boils down to solving a set of parallel
rank-one matrix approximation problems. The second one is
based on a block Tucker alternating least squares (BTALS)
algorithm that directly estimates the involved channels using
an iterative estimation procedure. The proposed algorithms
offer substantial performance gains over conventional LS
estimation while operating at much lower training overheads
by capitalizing on the tensor signal structure.

The contributions of this paper are summarized as follows:
First, we link the channel estimation problem for BD-RIS to

a tensor decomposition problem. Specifically, we show that the
received pilot signals can be organized as a three-dimensional
(3D) array or a third-order tensor that follows a (block) Tucker
decomposition model. In addition, we discuss the implications
of the specific BD-RIS architecture to the resulting tensor
decomposition structure.

Second, we propose two tensor decomposition-based
channel estimation schemes for BD-RIS that capitalize on
tensor modeling. The BTKF method is a closed-form scheme
that yields decoupled estimates of the involved channels
after an LS estimation step by solving a block-Kronecker
factorization problem that boils down to solving rank-one
approximation problems based on the 3-mode unfolding of
the received pilot tensor. The second method, BTALS, directly
estimates the channel matrices separately using the 1-mode
and 2-mode unfoldings of the received pilot tensor.

Third, we discuss the trade-offs involving the channel
estimation methods and their implications for the training
design. On the one hand, we show that the BTKF method
effectively exploits the inherent Kronecker structure of the
combined channel to provide a more accurate reconstruction
than the reference LS method, thanks to the noise rejection
property of the channel separation step. On the other hand,
by efficiently exploiting the tensor decomposition structure of
the received pilots, BTALS yields decoupled channel estimates
with a much lower training overhead, which can be orders of
magnitude smaller than that of LS and BTKF methods. Such
savings in training resources offered by BTALS are even more
pronounced for BD-RIS configurations with higher levels of
couplings among the scattering elements.

Fourth, we study the identifiability conditions and
uniqueness associated with the proposed algorithms and their
implications for training design. We propose a new training
design for the BD-RIS scattering matrix and derive the
structure of the BD-RIS training tensor used in each proposed
channel estimation method. The proposed designs fulfill the
physical constraints of the BD-RIS architecture and the
identifiability conditions of the associated block Tucker model.

Finally, simulation results show the superiority of the

proposed BTKF and BTALS algorithms compared to the
baseline LS estimator while highlighting the trade-offs
involving these methods in terms of normalized mean square
error (NMSE) performance, required training overhead, and
computational complexity. In particular, we show that BTKF
and BTALS offer performance gains over the reference LS
method thanks to decoupling the estimated channel matrices,
yielding a more accurate reconstruction of the combined
channel. For a group-connected BD-RIS architecture with Q
groups, the BTKF method achieves channel separation by
solving a set of Q rank-one matrix approximations in parallel.
On the other hand, the BTALS method directly estimates the
involved channel matrices by intertwining the estimation of the
transmitter-RIS and RIS-receiver channels in an iterative way
using an alternating least squares procedure. Our results also
show that the NMSE performance of the estimated channels
with group-connected BD-RIS architectures is the same as that
with conventional RIS in some scenarios.

This work is organized as follows. Section II provides the
basic material and definitions related to tensor decomposition,
along with the main notations and properties. Section III
describes the system model and discusses the baseline LS
method and BD-RIS design. Section IV gives a detailed
presentation of the tensor modeling of the received pilot
signals. Section V formulates the proposed channel estimation
methods. This section also discusses computational complexity
and uniqueness issues. Section VI describes the proposed
BD-RIS tensor design. Numerical results are discussed in
Section VII, and the paper is concluded in Section VIII.

II. TENSOR PREREQUISITES

In this section, we provide the useful notations and main
operators used in this papers as well an overview of the Tucker
decomposition, in which will be used to develop the proposed
channel estimation algorithm.

A. Notation and properties

Scalars are represented as non-bold lower-case letters a,
column vectors as lower-case boldface letters a, matrices
as upper-case boldface letters A, and tensors as calligraphic
upper-case letters A. The superscripts {·}T, {·}*, {·}H and
{·}+ stand for transpose, conjugate, conjugate transpose, and
pseudo-inverse operations, respectively. An identity matrix of
dimension K is denoted as IK . The operator ∥ · ∥F denotes
the Frobenius norm of a matrix or tensor, and E{·} is the
expectation operator. Given a matrix A ∈ CI×R, the operator
Di(A) defines a diagonal matrix of size R × R constructed
from the i-th row of A, for i ∈ {1, . . . , I}. From a set of Q
matrices X(q) ∈ CM×N , q = {1, . . . , Q}, we can construct a
block diagonal matrix as X = blkdiag

(
X(1), . . . ,X(Q)

)
∈

CMQ×NQ. Moreover, vec (A) converts A ∈ CI×R to a
column vector a ∈ CIR×1 by stacking its columns on top
of each other, while the operator unvec

(
a
)
I×R returns to the

matrix A ∈ CI×R. The symbols ◦, ⊗, ⋄, and |⊗| denote the
outer product, the Kronecker product, the Khatri-Rao product
(also known as the column-wise Kronecker product), and
the block Kronecker product, respectively. The Khatri-Rao
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product of matrices X ∈ CI×R and Y ∈ CJ×R, is defined as
Z = X ⋄ Y = [x1 ⊗ y1, . . . ,xR ⊗ yR] ∈ CJI×R, where xr
and yr are the r-th column of X and Y , respectively, r =
1, . . . , R. Likewise, let us define H = [H(1), . . . ,H(Q)] ∈
CM×LQ and G = [G(1), . . . ,G(Q)] ∈ CN×LQ, matrices
formed each by Q block matrices, i.e., H(q) ∈ CM×L and
G(q) ∈ CN×L, q = 1, . . . , Q. The block Kronecker product1

between H and G, denoted as W =H |⊗|G, is given by

W = [H(1) ⊗G(1), . . . ,H(Q) ⊗G(Q)] ∈ CNM×L2Q. (1)

We also use the following property of the Kroneker product

vec (ABC) =
(
CT ⊗A

)
vec (B) , (2)

where the involved matrices have compatible dimensions.

B. Slices and unfoldings

Consider a set of matrices Yk ∈ CI×J , ∀k = 1, . . . ,K.
Concatenating all K matrices, we form the third-order tensor
Y = Y1⊔3Y2⊔3 . . .⊔3YK ∈ CI×J×K , where ⊔3 indicates a
concatenation along the third dimension. We can interpret Yk
as the k-th frontal slice of Y , defined as the matrix Y ..k =
Yk ∈ CI×J . This matrix is built by varying the first and second
dimensions for a fixed third-dimension index k. The tensor Y
can be matricized by letting one dimension vary along the
rows and the remaining two dimensions along the columns.
From Y , we can form three different matrices, referred to as
the n-mode unfolding, n = 1, 2, 3, which can be respectively
obtained as a function of the frontal slices as[

Y
]
(1)

= [Y ..1, . . . ,Y ..K ] ∈ CI×JK , (3)[
Y
]
(2)

= [YT
..1, . . . ,Y

T
..K ] ∈ CJ×IK , (4)[

Y
]
(3)

= [vec(Y ..1), . . . , vec(Y ..K)]T ∈ CK×IJ . (5)

For convenience, we can also refer to the unfolding
operation as

[
Y
]
(n)

= unfold(Y , n), n = 1, 2, 3. The
n-mode product, denoted as “×n”, defines the multiplication
between a tensor Y and a matrix A, leading to a tensor
Z with compatible dimensions, i.e., Z = Y ×n A. It can
be computed by pre-multiplying the n-mode unfolding of Y
by the matrix A, i.e., [Z](n) = A[Y ](n). For example, the
1-mode product between Y ∈ CI×J×K and A ∈ CL×I
yields Z = Y ×1 A ∈ CL×J×K . It can be computed by
[Z](1) = A[Y ](1) ∈ CL×JK .

C. Tucker decomposition

The Tucker decomposition [25] defines the concept of
multilinear transformation. For a third-order tensor Y ∈
CI×J×K , it expresses the tensor as multiple sums of rank-one
tensor components, which can be defined as

Y =

R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

gr1,r2,r3ar1 ◦ br2 ◦ cr3 , (6)

where ar1 ∈ CI×1, br2 ∈ CJ×1, and cr3 ∈ CK×1 are
the column vectors of the factor matrices A ∈ CI×R1 ,

1The block Kronecker product defined in (1) is also referred to in the
literature as the Khatri-Rao product between partitioned matrices [24].

B ∈ CJ×R2 , and C ∈ CK×R3 , respectively, and G ∈
CR1×R2×K is referred to as the core tensor, with typical
element gr1,r2,r3

.
= [G]r1,r2,r3 . Adopting the n-mode product

notation, the Tucker decomposition can be written as

Y = G ×1 A×2 B ×3 C (7)

A special case is the Tucker-2 decomposition, where one of
its factor matrices equals the identity matrix, e.g., C = IK ∈
RK×K (with K = R3). In this case, (7) simplifies to

Y = G ×1 A×2 B (8)

The 3-mode (frontal) slices Y ..k ∈ CI×J can be expressed as

Y ..k = AG..kBT ∈ CI×J , k = 1, . . . ,K. (9)

By properly staking these frontal slices according to
equations (3)-(5), the three matrix unfolding of the Tucker-2
decomposition can be factorized as[

Y
]
(1)

= A
[
G
]
(1)

(
IK ⊗B

)T ∈ CI×JK , (10)[
Y
]
(2)

= B
[
G
]
(2)

(
IK ⊗A

)T ∈ CJ×IK , (11)[
Y
]
(3)

=
[
G
]
(3)

(
B ⊗A

)T ∈ CK×IJ . (12)

The Tucker decomposition is not unique due to rotational
freedom involving the factor matrices and the core tensor.
Indeed, the multiplication of each factor matrix by a
nonsingular matrix is compensated by transforming the
corresponding modes of the core tensor by the inverse of these
matrices without changing the output tensor [25]. However,
when the core tensor G is known, a unique estimation of the
factor matrices under trivial scaling ambiguities is possible
under certain conditions [26], which is the case of this work.

It is worth mentioning that the well-known parallel factor
(PARAFAC) decomposition, also known as the canonical
polyadic decomposition (CPD) [27], [14], is a special case
of the Tucker decomposition, in which R1 = R2 = R3 = R
while the core tensor reduces to an identity tensor. In this
case, we have Y = I3,R ×1 A×2 B ×3 C ∈ CI×J×K , with
A ∈ CI×R, B ∈ CJ×R, and C ∈ CK×R being the associated
factor matrices, where R denotes the tensor rank.

III. SYSTEM MODEL

Let us consider a multiple-input multiple-output (MIMO)
system assisted by a beyond diagonal reconfigurable intelligent
surface (BD-RIS), as illustrated in Fig. 1, where the
transmitter and the receiver are equipped with MT and MR

antennas, respectively, and a BD-RIS with N elements. For
simplification, we assume that the direct link between the
transmitter and the receiver is blocked.

A. Signal and channel models

We adopt a two-timescale protocol, where the transmission
consists of K blocks of consecutive T time slots each.
We assume that the length-T pilot sequences are repeatedly
transmitted through each block, while the BD-RIS response
repeats itself within one block and varies among blocks. This
training protocol follows the idea proposed in [19] for diagonal
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Fig. 1: A communication system aided by a BD-RIS.

RIS, in which the scattering matrix of the BD-RIS is fixed
during the time window corresponding to a block of T time
slots while varying between blocks. The received pilot signal at
the t-th time slot and k-th block is ȳt,k = GSkH

Txt+ b̄t,k ∈
CMR×1, where H ∈ CMT×N and G ∈ CMR×N are the
TX-RIS and RIS-RX channels, respectively, and Sk ∈ CN×N

is the BD-RIS scattering matrix associated with the k-th
training block, with SH

kSk = IN . Collecting the T time
slots of the k-th block yields Ȳk = GSkH

TX + B̄k ∈
CMR×T . The matrix X = [x1, . . . ,xT ] ∈ CMT×T collects
the transmitted pilot symbols during the T time slots, and
B̄k = [b̄1,k, . . . , b̄T,k] ∈ CMR×T is the additive noise at the
receiver modeled as a complex Gaussian random variable with
zero mean and unitary variance, i.e., ∼ CN (0,MRIMR

).
Assuming that the transmitter sends orthogonal

pilot sequences, which requires T ≥ MT , and after
matched-filtering using the known pilots, we get

Yk = GSkH
T +Bk ∈ CMR×T , (13)

where Yk
.
= ȲkX

H and Bk = B̄kX
H are the filtered pilot

signals and noise. Considering a group-connected BD-RIS
architecture [6], the N reflecting elements are divided into
Q groups, each with N̄ elements connected to each other, i.e.,
N = N̄ · Q. In this case, the scattering matrix is expressed
as Sk = blkdiag(S(1)

k , . . .S
(Q)
k ) ∈ CN×N , where the q-th

matrix S
(q)
k ∈ CN̄×N̄ satisfies S

(q)H
k S

(q)
k = IN̄ . Hence, (13)

translates into a sum of Q blocks

Yk =

Q∑
q=1

G(q)S
(q)
k H(q)T +Bk ∈ CMR×T , (14)

where H(q) ∈ CMT×N̄ and G(q) ∈ CMR×N̄ correspond
to the q-th block of H ∈ CMT×N̄Q and G ∈ CMR×N̄Q,
respectively, defined as follows

H(q) = H., [(q−1)N̄+1,...,qN̄ ] ∈ CMT×N̄ , q = 1, . . . , Q, (15)

G(q) = G., [(q−1)N̄+1,...,qN̄ ] ∈ CMR×N̄ , q = 1, . . . , Q. (16)

Hence, the channel matrices can be seen as a concatenation
of smaller submatrices such that H = [H(1), . . . ,H(Q)] ∈
CMT×N̄Q and G = [G(1), . . . ,G(Q)] ∈ CMR×N̄Q.

B. Least squares channel estimation

We start by recalling the conventional LS channel estimation
as a reference for the proposed solutions. Defining yk =

vec
(
Yk

)
∈ CMRMT×1, and using (2), the noiseless vectorized

received signal at the k-th block can be expressed as

yk = vec
( Q∑
q=1

G(q)S
(q)
k H(q)T

)
=

Q∑
q=1

(
H(q)⊗G(q)

)
vec

(
S

(q)
k

)
= (H |⊗|G)vec

(
S̄k

)
,

where S̄k = [vec
(
S

(1)
k

)
, . . . , vec

(
S

(Q)
k

)
] ∈ CN̄2×Q, and

H |⊗|G =
[
H(1)⊗G(1), . . . ,H(Q)⊗G(Q)

]
∈ CMRMT×N ,

is the combined block-Kronecker-structured MIMO channel
matrix that concatenates the combined channels associated
with the Q BD-RIS groups. Defining T

.
= H |⊗|G and

S̄ = [vec
(
S̄1

)
, . . . , vec

(
S̄K

)
]T ∈ CK×N̄2Q and collecting the

received signal over K blocks we have

Y = [y1, . . . ,yK ] = T S̄T +B ∈ CMRMT×K , (17)

where B is the corresponding noise term. An estimate of the
combined channel T can be obtained by right-filtering using
the known BD-RIS training matrix, i.e., T̂ = Y (S̄T)† as a
solution to the following least squares (LS) problem

T̂ = argmin
T

∥∥Y − T S̄T
∥∥2
F
, (18)

where T̂ ≈ Ĥ |⊗| Ĝ is an estimate of the combined channel.
Note that assuming an orthogonal design for BD-RIS training
matrix S̄ ∈ CK×N̄2Q, the solution is found by simplified
matched filtering [5]. In this case, the estimate of the combined
channel can also be found as T̂ = Y S̄∗. The LS solution
requires K ≥ N̄2Q to ensure a unique estimation of the
combined channel. This constraint may be too restrictive,
especially for a moderate number of scattering elements, due
to the quadratic dependency on the number of connected
BD-RIS elements in each group.

C. BD-RIS matrix design and motivation

Although the design proposed in [5] is optimal in the
mean square error (MSE) sense, LS channel estimation based
on (18) ignores the built-in block Kronecker structure of
the effective MIMO channel since only an estimate of the
“combined” channel is obtained. Hence, it requires a large
training overhead, which has a quadratic growth with the
group size N̄ . As discussed in the next sections, the block
Kronecker product structure linking the involved channel
matrices can be efficiently exploited, allowing us to obtain
enhanced channel estimates compared to the baseline LS
solution. Additionally, it turns out that the received signal in
(14) can be recast using a tensor modeling approach. This is
possible by reformulating the training design and rebuilding
the BD-RIS training structure as a third-order tensor. Then, by
resorting to tensor decomposition algorithms and capitalizing
on their intrinsic uniqueness properties, decoupled estimates
of the individual channels G and H can be obtained
with a significantly reduced training overhead and improved
accuracy. Additionally, as will be shown later (Section VI), the
proposed BD-RIS training design is flexible to allow operation
under more challenging system setups with K << N̄2Q,
which have not yet been considered in the literature.
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IV. TENSOR SIGNAL MODELING

In this section, we recast the signal model for the
received pilots using a tensor decomposition approach. In
correspondence with the background material presented in
Section II, we formulate the tensor signal models by starting
from the general (fully-connected) case for presentation
convenience. Then, we discuss the tensor signal formulation
for the group-connected case, which is of practical interest due
to its lower implementation complexity. The main expressions
derived in this section will be exploited later in the derivation
of the proposed channel estimation methods.

A. General fully-connected case

Starting from the signal model in equation (13) and omitting
the noise term for notation convenience, the received pilot
signal at the k-th block can be expressed as

Yk = GSkH
T ∈ CMR×MT . (19)

By analogy with equation (9), we can interpret the k-th
received pilot signal matrix as the k-th frontal slice of
the received pilot tensor Y ∈ CMR×MT×K that follows
a Tucker-2 decomposition [25], [26]. Using (8) with the
correspondences (A,B,C,G) ↔ (G,H, IK ,S), we can
express the received pilot signal tensor using the n-mode
product notation as

Y = S ×1 G×2 H, (20)

where Y = Y1 ⊔3 Y2 ⊔3 . . . ⊔3 YK ∈ CMR×MT×K , and
S = S1 ⊔3 S2 ⊔3 . . .⊔3 SK ∈ CN̄×N̄×K . Note that S results
from concatenating the BD-RIS scattering matrices along the
third dimension. We refer to S as the BD-RIS training tensor.

For the fully-connected case and adopting the Tucker
representation in (20), in correspondence with (10), (11), and
(12), we can deduce the following matrix unfoldings for the
received pilot signal tensor:[

Y
]
(1)

= G[S](1) (IK ⊗H)
T ∈ CMR×MTK , (21)[

Y
]
(2)

= H[S](2) (IK ⊗G)
T ∈ CMT×MRK , (22)[

Y
]
(3)

= [S](3)(H ⊗G)T ∈ CK×MRMT , (23)

where [S](n) is the n-mode unfolding of the BD-RIS training
tensor, n = 1, 2, 3. Following (3), (4), and (5), these matrix
unfoldings are respectively given by[

S
]
(1)

= [S ..1, . . . ,S ..K ] ∈ CN×NK , (24)[
S
]
(2)

= [ST
..1, . . . ,S

T
..K ] ∈ CN×NK , (25)[

S
]
(3)

= [vec(S ..1), . . . , vec(S ..K)]T ∈ CK×N2

, (26)

where S ..k ∈ CN×N , the k-th frontal slice of the tensor
S ∈ CN×N×K , corresponds to the BD-RIS scattering matrix
associated with the k-th training block, k = 1, . . . ,K.

B. Group-connected case

Let us now consider the group-connected architecture.
Starting from the signal model in (14), and ommitting the
noise term, we have

Yk =

Q∑
q=1

G(q)S
(q)
k H(q)T. (27)

In this case, the received pilot tensor Y ∈ CMR×MT×K

corresponds to a block Tucker-2 decomposition, i.e., we can
rewrite (20) as a sum of Q tensor blocks

Y =

Q∑
q=1

S(q) ×1 G
(q) ×2 H

(q), (28)

where S(q) ∈ CN̄×N̄×K is the BD-RIS training tensor
associated with the q-th group.

Group-connected architectures are commonly adopted due
to implementation complexity. In this case, the BD-RIS
training tensor is “sparse” due to its block-diagonal structure.
Figure 2 illustrates the decomposition of received pilot signals
in tensor form, corresponding to a Tucker-2 decomposition
composed of Q blocks. This decomposition can also be
viewed as a special block-term decomposition (BTD), more
specifically, also referred to as a “type-2 BTD”, which
represents a tensor into a sum of rank-(N̄ , N̄ , ·) tensor
blocks [24], [28]. From this figure, we can see that the
assumption of a group-connected architecture implies a
BD-RIS training tensor having a “block-diagonal” structure,
the k-th frontal slice of which corresponds to the BD-RIS
training matrix associated with the k-th block. Note that
a fully-connected BD-RIS architecture is equivalent to
having a fully dense BD-RIS training tensor in Figure 2,
which does not have zero off-diagonal blocks. Although
we focus on the group-connected case based on (28), any
(sub-connected) architecture can be captured by the general
tensor representation in (20), the difference being in the
structure of the BD-RIS training tensor S.

Similarly to (24)-(26), we construct the unfoldings of the
q-th group BD-RIS tensor as

[S(q)](1) = [S(q)
..1 , . . . ,S

(q)
..K ] ∈ CN̄×N̄K , (29)

[S(q)](2) = [S
(q)T
..1 , . . . ,S

(q)T
..K ] ∈ CN̄×N̄K , (30)

[S(q)](3) = [vec(S(q)
..1 ), . . . , vec(S(q)

..K)]T ∈ CK×N̄2

. (31)

Hence, for the group-connected case, equivalent expressions
can be obtained for the unfoldings of the received pilot tensor.
The corresponding expressions for the 1-mode and 2-mode
matrix unfoldings of the received pilot tensor can be obtained
by rewriting (21) and (22) as a sum of Q blocks

[
Y
]
(1)

= G · blkdiag
(
[S(1)](1), . . . , [S(Q)](1)

)
︸ ︷︷ ︸

S1


IK ⊗HT

1

...
IK ⊗HT

Q


[
Y
]
(2)

= H · blkdiag
(
[S(1)](2), . . . , [S(Q)](2)

)
︸ ︷︷ ︸

S2


IK ⊗GT

1

...
IK ⊗GT

Q


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Fig. 2: Illustration of the decomposition of the noiseless 3-D received
signal tensor Y of dimensions MR × T ×K for a group-connected
BD-RIS communication system. The resulting receiver pilot tensor
can be viewed as a sum of Q tensor blocks. The full BD-RIS training
tensor is given by a block-diagonal concatenation of Q component
tensors S(q), q = 1, . . . , Q, each of dimensions N̄ × N̄ ×K.

or, compactly, [
Y
]
(1)

= GS1

(
I |⊗|H

)T
, (32)[

Y
]
(2)

= HS2

(
I |⊗|G

)T
, (33)

where

S1
.
= blkdiag

(
[S(1)](1), . . . , [S(Q)](1)

)
∈ CN̄Q×N̄KQ (34)

S2
.
= blkdiag

(
[S(1)](2), . . . , [S(Q)](2)

)
∈ CN̄Q×N̄KQ (35)

with I
.
= [IK , . . . , IK ] ∈ CK×KQ. Likewise, the 3-mode

matrix unfolding of the received pilot tensor can be obtained
by rewriting (23) as a sum of Q blocks

[
Y
]
(3)

=
[
[S(1)](3), . . . , [S(Q)](3)

]
︸ ︷︷ ︸

S3


HT

1 ⊗GT
1

...
HT
Q ⊗GT

Q


= S3(H |⊗|G)T, (36)

where

S3
.
=

[
[S(1)](3), . . . , [S(Q)](3)

]
∈ CK×N̄2Q, (37)

is referred to as the compact 3-mode unfolding that
concatenates the 3-mode unfoldings of the Q tensors along
its columns. This matrix is key to deriving our first channel
estimation method, which relies on channel separation after
the LS estimation step using a Kronecker-product factorization
method. Likewise, the 1-mode and 2-mode unfoldings of the
received pilot tensor, given by the two expressions in (32)-(33),
are the basis for the formulation of the second algorithm,
which yields direct decoupled estimations of the two involved
channels using an iterative algorithm, as will be shown later.

Remark 1: The pairs of expressions (21)-(22) and (32)-(33)
representing the 1-mode and 2-mode unfoldings are equivalent
and interchangeable due to the following property

(I |⊗|H) = (IK ⊗H)P and (I |⊗|G) = (IK ⊗G)P ,

Sn = [S](n)P , n = 1, 2, (38)

where P
.
= [IQ⊗e

(K)
1 , . . . , IQ⊗e

(K)
K ]⊗IN̄ is a permutation

matrix of dimensions N̄QK×N̄KQ and e
(K)
k is a unit vector

corresponding to the k-th column of IK . This equivalence
implies that the 1-mode and 2-mode expressions in (32)-(33)
are equivalent to those in (21)-(22) since the first ones are
just permuted versions of the latter. Hence, both are valid
for formulating the block Tucker alternating least squares

(BTALS) channel estimation method. On the other hand, one
should note that the 3-mode unfolding expression in (37)
provides a more compact representation than the one in (23)
when considering a group-connected architecture. This is due
to the fact that working with the 3-mode unfolding of the
BD-RIS tensor S ∈ CN̄Q×N̄Q×K introduced unnecessary
zeros due to its block structure (see Figure 2). S3 is instead
a concatenation of the 3-mode unfoldings of Q tensor blocks.
Consequently, it is not a permuted version of [S](3) (as
opposed to the 1-mode and 2-mode unfoldings). Indeed, the
first is a K × N̄2Q matrix, while the second is a longer
and sparse K × N̄2Q2 matrix whose number of columns is
increased by a factor of Q. The difference in the structures
of {S1,S2} and S3 is a consequence of the “asymmetric”
structure of the block Tucker model in (28) with respect to
its third mode, which is an identity matrix and hence does
not depend on the number Q of blocks. Hence, in the next
section, we will adopt the compact 3-mode expression in (37)
to formulate the block Tucker Kronecker factorization (BTKF)
algorithm for channel estimation.

Remark 2: It is easy to see that the tensor model for
conventional (diagonal) RIS corresponds to a special case of
(20), where S ∈ CN×N×K is such that its K frontal slices
S ..1, . . . ,S ..K are diagonal matrices. In tensor notation, this
is equivalent to the reduced representation S = I3,N ×3 S,
where S ∈ CK×N is the diagonal RIS training matrix holding
the set of N phase shifts of each training block along its K
rows. In this case, the tensor signal model (20) reduces to

Y = (I3,N ×3 S)×1 G×2 H = I3,N ×1 G×2 H ×3 S,

which corresponds to a PARAFAC tensor model for the
received pilots. It is clear that the proposed BD-RIS Tucker
model generalizes the diagonal RIS PARAFAC model. For
further details on tensor modeling and algorithms for the
diagonal RIS case, we refer the reader to [19].

V. TENSOR-BASED CHANNEL ESTIMATION METHODS

In this section, we formulate the proposed channel
estimation methods by capitalizing on the tensor signal
structures discussed in the previous section. Two algorithms
are proposed to solve the channel estimation problem via
decoupling the estimates of the involved channel matrices
G and H . The first one, BTKF, is a closed-form solution
that extracts the channel estimates via a block Kronecker
factorization problem, which boils down to solving a set of
rank-one matrix approximation problems. The second one is
termed BTALS, which directly estimates the channel matrices
using an iterative procedure. We also discuss identifiability
and uniqueness issues and their overall implications for system
design. The design of the BD-RIS training tensor is a separate
topic that will be discussed in the next section.

A. Block Tucker Kronecker factorization algorithm (BTKF)
algorithm for decoupled channel estimation

Taking into consideration the noise term, we recall the
received signal model in tensor form as

Y = S ×1 G×2 H +B, (39)
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where B ∈ CMR×MT×K is the additive noise tensor.
Closed-form estimates of H and G can be obtained by

exploiting the block Kronecker structure of the compact
3-mode unfolding of the received pilot signal tensor in (36),
which is given by [Y ](3) = S3(H |⊗|G)T + [B](3). Assuming
K ≥ N̄2Q, a right-filtering of the received pilot signal gives

Z =
(
S†
3

[
Y
]
(3)

)T ≈ H |⊗|G ∈ CMRMT×N̄2Q. (40)

To obtain decoupled estimates of the involved channel
matrices H and G from the filtered signal in (40), we
formulate the following optimization problem

{Ĥ, Ĝ} = argmin
H,G

∥Z −H |⊗|G∥2F . (41)

By making use of the partition of the BD-RIS phase shifts
into Q groups, one can easily note that

[Z(1), . . . ,Z(Q)] ≈
[
H(1)⊗G(1), . . . ,H(Q)⊗G(Q)

]
, (42)

where Z(q) = Z.,[(q−1)N̄2+1,...,qN̄2] is the q-th block matrix of
the filtered signal, q = 1, . . . , Q. From such a block structure,
we can recast this problem as Q independent sub-problems
executed in parallel, with the q-th problem being defined as

{Ĥ(q), Ĝ(q)} = argmin
H(q),G(q)

∥∥∥Z(q) −H(q) ⊗G(q)
∥∥∥2
F
, (43)

q = 1, . . . , Q. This problem can be solved using the
classical nearest Kronecker approximation method originally
proposed in [29], a closed-form approach that yields the best
factorization of the Kronecker product of two matrices.

Specifically, by properly permuting the elements of Z(q),
problem (43) can be recast as a simple rank-one matrix
approximation, such that it can be rewritten as

{ĥ(q), ĝ(q)} = argmin
h(q),g(q)

∥∥∥Z(q) − g(q)h(q)T
∥∥∥2
F
, (44)

where Z
(q) ∈ CMRN̄×MT N̄ is a reshaped version of Z(q) ∈

CMRMT×N̄2

, g(q) = vec
(
G(q)

)
∈ CMRN̄×1, and h(q) =

vec
(
H(q)

)
∈ CMT N̄×1. Defining the truncated singular

value decomposition (SVD) of Z
(q)

= U (q)Σ(q)V H(q), the
estimates of h(q) and g(q) corresponding respectively to the
dominant left and right singular vectors u

(q)
1 = U

(q)
.1 ∈

CMRN̄×1 and v
∗(q)
1 = V

∗(q)
.1 ∈ CMT N̄×1

ĝ(q) = u
(q)
1 , Ĝ(q) = unvec

(
ĝ(q)

)
MR×N̄ , (45)

ĥ(q) = v
∗(q)
1 , Ĥ(q) = unvec

(
ĥ(q)

)
MT×N̄ . (46)

The global estimates of the channel matrices are then formed
by collecting the Q estimated blocks

Ĝ = [Ĝ(1), . . . , Ĝ(Q)] ∈ CMR×N̄Q, (47)

Ĥ = [Ĥ(1), . . . , Ĥ(Q)] ∈ CMT×N̄Q. (48)

A block diagram of the main steps of the BTFK algorithm
is provided in Figure 3.

Fig. 3: Block-diagram of the BTKF algorithm.

LS Step

LS Step

LS Step LS Step

LS StepLS Step

Fig. 4: Block-diagram of the BTALS algorithm.

B. Block Tucker alternating least squares (BTALS) algorithm
for decoupled channel estimation

Starting from the noisy received pilot model in the tensor
form shown in equation (39), let us consider the following
problem

min
G,H

∥∥∥Y − S ×1 G×2 H
∥∥∥2

F
. (49)

It is clear that this is a nonlinear problem in the unknowns
since the solution involves products of the coefficients of
the channel matrices H and G. However, it is known from
tensor decomposition theory [30] that this problem can be
efficiently solved through an alternating least squares (ALS)
estimation algorithm [30], [31], a popular iterative method for
fitting a tensor model thanks to its simplicity and monotonic
convergence property. In our case, the algorithm yields
decoupled estimates of the channel matrices by converting
the bilinear problem in (49) into the following two simplest
linear LS sub-problems. Specifically, to estimate the channels
H and G, we exploit the 1-mode and 2-mode unfoldings of
the received pilots tensor Y , defined in (32)-(33), respectively.
The bilinear alternating least squares (BALS) method solves
the following two LS problems in an iterative way

Ĝ=argmin
G

∥∥∥[Y]
(1)

−GS1

(
I |⊗|H

)T
∥∥∥2
F
,

Ĥ=argmin
H

∥∥∥[Y]
(2)

−HS2

(
I |⊗|G

)T
∥∥∥2
F
,

the solutions of which are respectively given by

Ĝ =
[
Y
]
(1)

[
S1

(
I |⊗|H

)T
]+

, (50)

Ĥ =
[
Y
]
(2)

[
S2

(
I |⊗|G

)T
]+
. (51)

The algorithm intertwines the LS estimates of G and H . At
each iteration, one matrix is updated based on a previously
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obtained estimate of the other matrix. This procedure is
repeated until the convergence. Figure 4 illustrates the BTALS
iterations process. An error measure computed at the end of the
i-th iteration is given by ϵ(i)

.
= ∥

[
Y
]
(3)

− Ŷ(i)∥2F/∥
[
Y
]
(3)

∥2F,

where Ŷ(i)
.
= [S](3)

(
Ĥ(i) ⊗ Ĝ(i)

)T
. The convergence is

declared when this error does not significantly change between
two successive iterations, which implies that |ϵ(i)−ϵ(i−1)| ≤ η,
where η is a convergence threshold. A summary of the steps
of the proposed BALS algorithm is provided in Algorithm 2.

Such a bilinear ALS procedure may improve or maintain
but cannot worsen the current fit, usually leading to a global
minimum solution [15]. For simplicity, random initialization
can be adopted. However, one may resort to enhanced
initialization and acceleration procedures [15], [30]. Other
initialization strategies that could be used to exploit the
structure of the channel matrices are possible, although not
advocated here. In our case, where the core tensor (represented
by the BD-RIS structure) is known at the receiver, such
enhancements are not required, and random initialization is
enough to obtain satisfactory results.

The main steps of the proposed BTKF and BTALS
algorithms are summarized in Algorithm 1 and Algorithm 2.

C. Discussion

From the above discussion, it is clear that the BTALS
algorithm has less restrictive requirements on the training
length K than the BTKF algorithm. This comes from the
fact that the latter only exploits the 3-mode unfolding of the
received pilot tensor (as is the case with the LS method [5]),
and channel decoupling is carried out after the LS filtering
step, which is the bottleneck restricting the training length.
On the other hand, the BTALS algorithm exploits the 1-mode
and 2-mode unfoldings of the received pilot tensor to yield
direct decoupled estimates of the two involved channels. The
associated LS steps involve more relaxed requirements for the
training length K compared to BTKF.

It is worth highlighting the trade-offs between BTKF and
BTALS regarding computational complexity and processing
delay. To calculate the complexity, we assume a complexity
O(mn) for computing a rank-one approximation of a matrix
A ∈ Cm×n [32], while the Moore-Penrose pseudo-inverse
of A has a cost O(m2n). Hence, the BTKF algorithm
requires O(QN̄2MRMT ) for computing the Q rank-one
approximations to find the individual channel estimates for
each BD-RIS group, as shown in (44). In addition, since
BTKF also includes a prior LS estimation step, its overall
complexity corresponds to O(MRTKN̄

2Q). In contrast, the
BTALS algorithm involves two LS estimation steps at each
iteration, where each step requires the computation of two
matrix inverses, as shown in steps 4 and 5 of Algorithm
2. Considering the dimensions of these matrix inverses and
summing up their individual complexities, we arrive at a total
cost of O(ImaxN̄

2QK(MR +MT )), where Imax denotes the
maximum number of iterations assumed.

It is worth mentioning that the BTFK method accomplishes
channel estimation in closed form utilizing Q independent
and parallel processing routines, which implies a shorter

Algorithm 1 Block Tucker Kronecker factorization algorithm
(BTKF) for decoupled channel estimation

1: Inputs: Received signal tensor Y and BD-RIS training
tensors {S(1), . . . ,S(Q)}.

2: Compute an estimate of Z by filtering(
S†
3

[
Y
]
(3)

)T ≈ H |⊗|G ∈ CMRMT×N̄2Q.

3: for q = 1 : Q do
4: Partition Z into Q matrix blocks {Z(1), . . . ,Z(Q)}:

Z(q) = Z.,[(q−1)N̄2,...,qN̄2] ∈ CMRMT×N̄2

.

5: Reshape Z(q) to obtain Z
(q) ∈ CMRN̄×MT N̄ .

6: Define the SVD of Z
(q)

= U (q)Σ(q)V (q)H.
7: Obtain an estimate of G(q) and H(q) as

Ĝ(q) = unvec
(
u
(q)
1

)
MR×N̄ , Ĥ

(q) = unvec
(
v
∗(q)
1

)
MT×N̄ .

8: end for
9: Return Ĝ = [Ĝ(1), . . . , Ĝ(Q)], Ĥ = [Ĥ(1), . . . , Ĥ(Q)].

Algorithm 2 Block Tucker alternating least squares (BTALS)
algorithm for decoupled channel estimation

1: Inputs: Received signal tensor Y , BD-RIS training tensor
S, number I of iterations, and convergence threshold η.

2: Set i = 0. Randomly initialize Ĥ(i=0).
3: for i = 1 : I do
4: Compute an LS estimate of G(i) as

Ĝ(i) =
[
Y
]
(1)

[
S1

(
I |⊗|H(i−1)

)T
]+

.

5: Compute an LS estimate of H(i) as

Ĥ(i) =
[
Y
]
(2)

[
S2

(
I |⊗|G(i)

)T
]+

.

6: Compute Ŷ(i) = [S](3)
(
Ĥ(i) ⊗ Ĝ(i)

)T

and calculate the error ϵ(i) =
∥∥[Y]

(3)
− Ŷ(i)

∥∥2
F.

7: Check convergence and stop if |ϵ(i) − ϵ(i−1)| ≤ η.
8: end for
9: Return Ĝ(i) and Ĥ(i).

processing delay than BTALS. The latter consists of a
sequential process of alternating estimation steps, where the
channel matrices associated with the Q BD-RIS groups are
jointly estimated. Therefore, there is a longer processing
delay than BTKF. From a practical perspective, optimized
procedures for computing rank-one approximations and the
possibility of parallel processing are attractive features of
BTKF despite its higher training overhead than BTALS. Thus,
there is clearly a trade-off between both algorithms involving
complexity, training overhead, and processing delay.

Remark 3: The steps 4 and 5 of Algorithm 2, derived from
the unfolding expressions (32)-(33), can be replaced by the
updating steps Ĝ(i) = [Y ](1)

[
[S](1)(IK ⊗ H(i−1))

T
]+

and
Ĥ(i) = [Y ](2)

[
[S](2)

(
IK ⊗G(i)

)T ]+
that result from the

pair of expressions (21)-(22). As mentioned in Remark 1,
both representations produce the same result. Numerical
experiments have shown us that the second choice yields a
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faster runtime in the MATLAB environment. This is because
the traditional Kronecker product can be computed more
efficiently than the block Kronecker product.

D. Uniqueness and identifiability issues

We discuss the identifiability issues and requirements in
terms of parameter settings related to an essentially unique
estimate of the channel matrices using the proposed BTKF
and BTALS algorithms. In particular, capitalizing on the
uniqueness conditions for the BTD [24] allows us to derive
useful relations involving the system parameters, such as the
number of transmit/receive antennas and training length for
the proposed algorithms.

First, let us recall that the received pilot tensor in the
noise-free case follows a Tucker-2 decomposition, as shown
in (20). In the group-connected case, it can be expressed as
a sum of Q blocks (see (28)). In the general case, Tucker
models are not essentially unique due to rotational freedom
since nonsingular transformations that compensate each other
can be applied to the core tensor and the corresponding factor
matrix in each mode without changing the tensor fit [25],
[30]. Specifically, defining TG ∈ CN×N and TH ∈ CN×N ,
any alternative solution Ĝ = GTG and Ĥ = HTH and
Ŝ = S ×1 T−1

G ×2 T−1
H yields the same result since Y =

Ŝ×1 Ĝ×2Ĥ = (S×1T
−1
G ×2T

−1
H )×1 (GTG)×2 (HTH) =

S ×1 (G(TGT−1
G )) ×2 (H(THT−1

H )) = S ×1 G ×2 H . In
the group-connected case, these nonsingular transformation
matrices are confined within each block, and one can also
arbitrarily permute the Q blocks without changing the result
[24]. However, the core tensor is fixed in our case since we
know the BD-RIS training tensor S at the receiver. In this
case, these transformation matrices reduce to trivial scalar
indeterminacies affecting the factor matrices that compensate
each other, i.e., TG = αIN and TH = βIN ., with αβ = 1.

Then, in the noise-free case, the estimated channel matrices
Ĝ and Ĥ are related to the true ones by the identities

Ĝ = αG, Ĥ = βH, αβ = 1.

Considering the 3-mode unfolding of the received pilot tensor
given in (23) and introducing the transformation matrices,
we have

[
Y
]
(3)

= [S](3)(Ĥ ⊗ Ĝ)T = [S](3)((HTH) ⊗
(GTG))T = [S](3)(TH ⊗ TG)T(H ⊗ G)T. Note that the
only choice for TG and TH satisfying the Kronecker-product
equation TH ⊗ TG = IN2 are scaled identity matrices that
compensate each other.

The reasoning for the group-connected case is similar but
applies to each group. Hence, the channel matrices associated
with the q-th group are related to the true ones by the identities

Ĝ(q) = α(q)G(q), Ĥ(q) = β(q)H(q), α(q)β(q) = 1

for q = 1, . . . , Q. It is worth noting that these scaling
ambiguities affecting the individual channels are irrelevant
to the optimization of the BD-RIS scattering coefficients and
transmit/receive beamforming vectors since they cancel each
other when building the combined channel used to optimize
the system parameters using state-of-the-art methods [5].

As discussed in Sections V-A and V-B (and summarized
in Algorithms 1 and 2), the decoupled estimation of the
channel matrices relies on the different unfoldings of the
received pilot tensor. For the BTKF algorithm, the essential
uniqueness of the channel estimates requires S̄3 to be full
row-rank so that the filtering step in (40) yields a unique
solution. This implies that K ≥ N̄2Q is required. The
BTALS algorithm estimates the channel matrices by solving
the LS problems in (50) and (51) (see also steps 4 and 5
of Algorithm 2). Defining P1

.
= S1

(
I |⊗|H

)T ∈ CN×KMT

and P2
.
= S2

(
I |⊗|G

)T ∈ CN×KMR and from the LS
problems in (50) and (51), we conclude that identifiability of
Ĝ = [Y ](1)P

†
1 and Ĥ = [Y ](2)P

†
2 requires that P1 and P2 be

right-invertible, which implies KMT ≥ N and KMR ≥ N ,
respectively. In addition, it is required that S1 ∈ CN̄Q×N̄KQ

and S2 ∈ CN̄Q×N̄KQ have full row-rank. Note, however,
that these conditions are necessary but not sufficient for
uniqueness. Nevertheless, these conditions are useful for the
system designer to eliminate “bad” configurations that do not
yield unique estimates of G and H separately. Otherwise
stated, system setups that violate one of these conditions do
not lead to unique channel estimates and can be discarded.

Sufficient condition: We can obtain a condition for
guaranteed identifiability of the channel matrices by adopting
a similar reasoning as that of [24] to study the uniqueness of
the block Tucker2 decomposition (therein referred to as type-2
decomposition). The discussion is simpler in our context since
the core tensor (represented by the BD-RIS training tensor)
is known. Under the assumption that G and H are full
column-rank, their essential uniqueness is guaranteed if K ≥ 3
and the BD-RIS training tensor S does not have proportional
frontal slices, which means that S ..k ̸= αS ..k′ , ∀k ̸= k′,
k, k′ ∈ {1, . . . ,K}, where α is a scalar. This result implies that
the design of the BD-RIS tensor is crucial to the uniqueness of
the channel estimates for both BTKF and BTALS algorithms.

VI. BD-RIS TRAINING TENSOR DESIGN

As shown in the previous section, the BTKF and BTALS
algorithms exploit the BD-RIS training tensor differently to
estimate the involved channel matrices. While the BTKF relies
on its-mode unfolding (37) for a two-step channel separation
using Kronecker factorization, BTALS exploits its 1-mode and
2-mode unfoldings for a direct and iterative channel estimation
method. It is clear that a proper design of the BD-RIS training
tensor is crucial to ensuring unique estimates of the channel
matrices (up to trivial scaling ambiguities) for both algorithms.
We are interested in a more flexible (lower overhead) design,
which is valid for K << N̄2Q, in contrast to the design of [5]
that requires K = N̄2Q for the LS estimation. It also allows
us to go from conventional RIS to BD-RIS fully-connected
architectures while covering a broader range of values of K.
In the following, we discuss the design of the BD-RIS training
tensor in two steps. We first formulate the baseline BD-RIS
tensor design and then discuss the BD-RIS training structures
used by the BTKF and BTALS algorithms, respectively.
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Let us define the tensor Z ∈ CN̄×N̄×K1 such that its k1-th
frontal slice corresponds to

Z ..k1
.
= unvecN̄×N̄ (zk1) ∈ CN̄×N̄ , k1 = 1, . . . ,K1. (52)

Note that these frontal slices are column/row-permuted
versions of the DFT matrix obtained from the applied circular
shifts, as detailed earlier in this section. The basic structure of
the BD-RIS tensor S(q) ∈ CN̄×N̄×K is given, as a function
of its k-th frontal slice, as follows

S(q)
..k = [Θ]k2,qZ ..k1 ∈ CN̄×N̄ , k

.
= (k2 − 1)K1 + k1 (53)

where Θ
.
= [θ1, . . . ,θQ] ∈ CK2×Q is a (possibly truncated)

K2 × Q Hadamard (ΩHAD) or a DFT (ΩDFT) matrix, where
K2 = K/K1 must be an integer. Note that each slice S(q)

..k ∈
CN×N is orthogonal, i.e., S(q)

..kS
(q)H
..k = S(q)H

..k S(q)
..k = IN̄ ,

k = 1, . . . ,K since Z ..k1 defined in (52) is orthogonal ∀k1 ∈
{1, . . . ,K1}. Collecting the K slices in (53) according to
(29)-(31) gives [S(q)](1) = θT

q⊗[Z](1) ∈ CN̄×N̄K , [S(q)](2) =

θT
q⊗[Z](2) ∈ CN̄×N̄K , and [S(q)](3) = θq⊗[Z](3) ∈ CK×N̄2

.
Substituting into (34)-(35), and (37), we obtain

S1= blkdiag(θT
1 ⊗ [Z](1), . . . ,θ

T
Q ⊗ [Z](1)), (54)

S2= blkdiag(θT
1 ⊗ [Z](2), . . . ,θ

T
Q ⊗ [Z](2)), (55)

S3=
[
θ1 ⊗ [Z](3), . . . ,θQ ⊗ [Z](3)

]
= Θ⊗ [Z](3), (56)

where [Z](1) ∈ CN̄×N̄K1 , [Z](2) ∈ CN̄×N̄K1 , and [Z](3) ∈
CK1×N̄2

are the the unfoldings of the circulant tensor Z
constructed from its frontal slices similarly to (24)-(26). Since
the frontal slices of the tensor Z are symmetric due to (52),
we have [Z](1) = [Z](2), which implies [S(q)](1) = [S(q)](2),
q = 1, . . . , Q, and, hence, S1 = S2 in (54)-(55).

A. BD-RIS design for the BTKF algorithm

The first step of the BTKF algorithm (see Figure 3)
corresponds to filtering the received pilot tensor by the
compact 3-mode unfolding S3 = Θ ⊗ [Z](3) of the BD-RIS
tensor. This step is the same as that of the traditional LS
estimation method and is subject to the same requirements.

If K ≥ N̄2Q, or, equivalently, if K1 = N̄2 and K2 ≥
Q, then S3 is column-orthogonal, which implies SH

3 S3 =
(K/N̄)IN̄2Q. This property can be checked as follows. We can
first note that K ≥ N̄2Q implies K1 = N̄2 and K2 = K/N̄2.
In this case, the 3-mode unfolding of the circulant tensor
Z ∈ CN̄×N̄×N̄2

is a square N̄2 × N̄2 circulant matrix
with orthogonal rows constructed from circular shifts of the
DFT basis in vectorized form, which implies [Z]H(3)[Z](3) =

N̄IN̄2 . From (56), we have [S(q)]H(3)[S
(q)](3) = (ΘHΘ) ⊗

([Z]H(3)[Z](3)) = K/N̄2 ⊗ N̄IN̄2 = (K/N̄)IN̄2 . Hence, it
follows that SH

3 S3 = IN̄2Q.
Due to this column-orthogonality property, a simple

matched filtering can replace the pseudo-inverse in step 3 of
Algorithm 1 while offering optimized performance [5].

B. BD-RIS design for the BTALS algorithm

The BTALS algorithm can provide unique estimates of the
individual channel matrices by capitalizing on the essential

uniqueness properties of block Tucker decompositions [24],
[33]. As discussed in section V-D, in our context, the
uniqueness of our BD-RIS block Tucker model (28)
assumes that the BD-RIS training tensor does not have
proportional frontal slices, which means no slices in the set
{S(q)

..1 , . . . ,S
(q)
..K}, ∀q ∈ {1, . . . , Q} are scalar multiples of

each other. To cope with this assumption while preserving
structural properties, we design the BD-RIS training tensor as

S(q)
..k = Dk(W

(q))S̄(q)
..kDk(W

(q)∗), k = 1, . . . ,K, (57)

where S̄(q)
..k follows the design in (53), and W (q) .

=

[w
(q)
1 , . . . ,w

(q)
K ]T ∈ CK×N̄ is a matrix of exponentials,

whose k-th row is given by w
(q)
k

.
= [1 ejψ

(q)
k,1 , . . . , e

jψ
(q)

k,N̄−1 ]T,
with phases {ψ(q)

k,n} uniformly distributed between [0, 2π),
k = 1, . . . ,K, q = 1, . . . , Q.

The random phase shifts generated by the transformations
in (57) ensure that the K frontal slices of the BD-RIS training
tensor are uncorrelated. This eliminates proportional slices that
may result from the design in (53) depending on the values
assumed for N̄ and Q, ensuring the uniqueness of the channel
estimates. Note also that the random left/right rotations applied
to the basis tensor preserve the orthogonality of the frontal
slices, i.e., S(q)

..kS
(q)H
..k = S(q)H

..k S(q)
..k = IN̄ , k = 1, . . . ,K.

VII. NUMERICAL RESULTS

We evaluate the performance of the proposed BTKF and
BTALS receivers under different system setups. We also
discuss the tradeoffs involving the proposed channel estimation
methods and their superior performance compared to the LS
scheme [5]. We consider the NMSE of the combined channel
C = H |⊗|G ∈ CMRMT×N̄2Q. The NMSE is given by

NMSE
(
Ĉ
)
=

∥∥∥C − Ĉ
∥∥∥2
F

∥C∥2F
.

As in [5], we assume i.i.d. channels, and we compare the
performance of the different methods for a variety of parameter
setups that are shown in each figure.

In Figures 5 to 7, we evaluate the performance of the
proposed receiver BTKF with the baseline LS of [5]. It is
worth mentioning that the BTALS is omitted here due to the
fact that it achieves the same performance as the BTKF in the
considered scenarios. Since the BTALS is the only receiver
that can operate at a lower training overhead, we will discuss
its performance in a separate section (Figure 8 to 10). For
all results, orthogonal pilot sequences are assumed, and their
length is fixed to its minimum value Tmin =MT .

In Figure 5, we compare the NMSE of the combined
channel by fixing K = 256, which is the minimum value
(Kmin = N̄2Q) for the configuration with largest group size
N̄ = 4. First, we observe that BTKF offers higher estimation
accuracies than the baseline LS method, regardless of the
group size. Indeed, the LS method estimates the combined
channel as a classical MIMO channel estimation problem,
which is blind to its inherent Kronecker factorization structure.
Thus, the performance of the reference method is sensitive
to the number of groups and degrades as the group size
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Fig. 5: Comparison between BTKF and LS for different
BD-RIS configurations.
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Fig. 6: Comparison between BTKF and LS considering the
minimum training overhead (Kmin) for each configuration.
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Fig. 7: Comparison between BTKF and LS for different
numbers of transmit and receive antennas.

(N̄ ) increases, while the BTKF method is insensitive to it.
Additionally, we can see that the performance gains of BTKF
over LS increase with N̄ . Such a gain comes from the channel
separation property of BTKF that exploits the Kronecker
structure of the combined channel.

In Figure 6, we assume the minimum training overhead for
each considered BD-RIS configuration, i.e., Kmin = N̄2Q for
each setup, that ensure a unique solution. It is interesting to
note that the baseline LS scheme [5] has the same performance
in all configurations. Hence, the total number of channel
coefficients to be estimated is the same in all the training
configurations considered in this figure. In contrast, the BTKF
method estimates fewer channel coefficients than LS. The gap
in terms of the number of channel coefficients to be estimated
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Fig. 8: Performance of BTALS as a function of the number
K of training blocks. The SNR is fixed to 20 dB.

increases as the group size, which explains the performance
gap between the two methods as N̄ increases. Note that, in
the single-connected case (N̄ = 1), the numbers of estimated
channel coefficients are the same for LS and BTKF. However,
even in this case, the BTKF still offers a performance gain over
LS. From this set of results, one can conclude that as the group
size increases, the noise rejection gain offered by the rank-one
approximation step of BTKF also increases. In contrast, the
LS method has nearly the same performance regardless of the
group size since it does not take advantage of the Kronecker
structure of the combined channel.

In Figure 7, we fix the group size N̄ = 4 and the
total number of groups Q = 16, implying N = 64 RIS
elements. In this experiment, we compare the performance
of BTKF and LS for different numbers of antennas MT and
MR at the transmitter and receiver, respectively. Note that
the pilot sequence length is adjusted in each configuration
to its minimum value (T = MT ). We observe that the
performance of the LS estimator is the same regardless of
the number of transmit/receive antennas. Indeed, although the
pilot length increases to ensure orthogonality, the number of
channel coefficients of the combined channel also increases
with MT and MR. This means that the LS estimator
cannot benefit from the added spatial degrees of freedom
to improve channel estimation performance. In contrast, the
BTKF method efficiently benefits from more transmit and
receive spatial degrees of freedom by capitalizing on the
Kronecker structure of the combined channel. Such a gain
comes from the noise rejection gains provided by the rank-one
approximation problems in (44), whose dimensions increase
with MT and MR, yielding more accurate estimates of G and
H and, consequently, of the combined channel C = Ĥ |⊗| Ĝ.

In the next experiments (Figures 8 to 10), we turn our
attention to the BTALS algorithm and study its performance
for several system configurations. The focus is on very low
training overhead setups, where K << N̄2Q. Hence, these
figures do not show the results of the LS and BTKF methods
since they cannot operate in the considered challenging setups
over the full range of values of K due to their more restrictive
requirements on this training parameter.

Figure 8 depicts the NMSE performance of BTALS as a
function of the number K of training blocks, by varying
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Fig. 9: BTALS performance vs. the number Q of groups.
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Fig. 10: BTALS performance for different configurations.

from K = 24 to K = 128, for a fixed SNR equal to
20 dB. It can be observed that all configurations achieve
very close performance. In particular, the performance gap
between group-connected architectures and the fully connected
architecture is negligible. The group-connected configurations
have a slight performance gap (≈ 0.5 dB) over the
single-connected one (N̄ = 1, Q = 64). Note that for
most of the system setups (N̄ = {4, 8, 16, 32, 64}), the range
considered for the BD-RIS training length K is far below
the minimum value required by the LS and BTKF methods,
which is Kmin = N̄2Q in each case. As an example, for
the configuration (N̄ ,Q) = (4, 16), LS and BTKF would
require K = 256 blocks while for (N̄ ,Q) = (64, 1), they
would require K = 4096 blocks. These results corroborate
the remarkable savings of training resources provided by the
BTALS algorithm, which can operate over a broader set of
choices for K with significantly lower training overheads.

In Figure 9, we show the performance of BTALS as
a function of the number Q of groups, going from the
fully-connected case (Q = 1) to the single-connected case
(Q = 64). We assume N = N̄Q = 64 RIS elements,
K = 64 blocks, and an SNR of 20 dB while considering
configurations with different numbers of transmit and receive
antennas. As expected, the performance increases as more
transmit/receive antennas are used, showing the effectiveness
of BTALS in converting spatial diversity gains at both link
ends into more accurate channel estimates despite the increase
in the number of estimated channel coefficients. These results
corroborate the gains of tensor-based processing for BD-RIS
channel estimation. We can also see that when the number of
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Fig. 11: Average number of iterations for BTALS convergence
as a function of the number K of training blocks.
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Fig. 12: Computational complexity of LS [5], BTKF, and
BTALS for different group sizes N̄ .

antennas and the transmit/receive increases, the gap among the
single-, group- and fully-connected architectures reduces.

Figure 10 shows the NMSE performance of BTALS as
a function of the SNR, assuming N = 64 and different
BD-RIS configurations (combinations of N̄ and Q), including
the single-connected architecture to the fully-connected one
as extreme cases. In all configurations, the training length
K = 32 (corresponding to N/2) is much smaller than the
product N̄2Q that is the minimum overhead required by the LS
and BTKF methods (both cannot operate in this case). We can
see similar results in all the considered configurations. These
results show that BTALS is an attractive solution in terms of
training overhead compared to the competing schemes.

In Figure 11, we study the convergence performance of
BTALS. First, we can see that lower training lengths imply
more iterations to achieve convergence. Indeed, increased
time diversity is available when more training blocks are
used, which helps BTALS to speed up its iterative process.
For very low training lengths (K ≤ 32), the required
number of iterations is more sensitive to the group size
N̄ . However, for most of the considered values of K, the
convergence behavior is similar regardless of the chosen
group-connected configuration. It can also be noted that
the single-connected case using optimal DFT design for
the RIS training matrix needs fewer iterations than the
group-connected cases, although the gap is not significant.

In Figure 12, we compare LS, BTKF, and BTALS in
terms of computational complexity. We plot the complexity
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order of each algorithm as a function of the group size
N̄ for a BD-RIS with N = 64 elements. Recall that
N̄ = 1 corresponds to the single-connected case, while
N̄ = 64 to the fully-connected case. As expected, the
computational complexity increases with the group size in all
cases. Moreover, since the convergence of BTALS is sensitive
to the SNR (see Fig. 11), its overall complexity will increase at
low SNRs. This is not the case with BTKF, whose complexity
does not depend on the SNR due to its closed-form nature.
Such a complexity gap is the price BTALS pays to operate at a
very low overhead compared to the BTFK and the LS methods.
In addition, BTKF and LS have comparable complexities in
this scenario since the complexity is dominated by the matched
filtering step (the same for both LS and BTKF).

VIII. CONCLUSION AND PERSPECTIVES

The channel estimation problem for BD-RIS can be
addressed from a tensor decomposition perspective. Recasting
the received pilot signals as a block Tucker tensor model yields
individual estimates of the involved channels by exploiting the
multilinear structure of the received pilot signals. Decoupling
the individual channels for BD-RIS has some key benefits.
First, it provides improved CSI estimation accuracy over
traditional LS estimation by capitalizing on the inherent
(block) Kronecker structure of the combined channel. The
gains are more pronounced as more transmit/receive antennas
are available. Second, the channel estimates are obtained with
significantly lower training overheads than the LS method.

The proposed BTKF and BTALS algorithms have
interesting tradeoffs. When training overhead is not critical,
BTKF is preferable due to its lower complexity, closed-form
solution, and small processing delay. On the other hand, when
minimizing the training overhead is crucial (especially for
strongly connected BD-RIS), BTALS is the most attractive
choice due to its flexibility in operating with considerably
fewer training blocks than the LS estimator with no
performance degradation. Moreover, the proposed BD-RIS
training yields decoupled estimates of the individual channels
up to a scalar factor, which is irrelevant to system optimization.
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