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Abstract—This letter proposes a model for symbol detection in
the uplink of intelligent reflecting surface (IRS)-assisted networks
in the presence of channel aging. During the first stage, we model
the received pilot signal as a tensor, which serves as a basis for
both estimating the channel and configuring the IRS. In the
second stage, the proposed tensor approach tracks the aging
process to detect and estimate the transmitted data symbols.
Our evaluations show that our proposed channel and symbol
estimation schemes improve the performance of IRS-assisted
systems in terms of the achieved bit error rate and mean squared
error of the received data, compared to state of the art schemes.

Index Terms—channel aging, channel estimation, intelligent
reflecting surfaces, tensor-based algorithm

I. INTRODUCTION

Over the last few years, IRS has been considered as one
of the possible technologies to be deployed in beyond fifth
generation (B5G) wireless networks due to their potential
to improve system capacity [1]–[4]. An IRS is a 2D panel
composed of many passive reflecting elements whose phase
shifts are adjusted to maximize the signal-to-noise ratio (SNR)
at the intended receiver [5]. Hence, channel estimation must
be performed at the end nodes of the network and the receiver
should estimate the involved channels from received pilots
reflected by the IRS according to a training protocol. Several
works have addressed this problem, e.g., [6]–[8]. As pointed
out in [8], channel estimation methods can be divided into
unstructured and structured methods, where the latter category
exploits the parametric (geometric) modeling of the cascaded
channel, which is the focus of the present work.

The authors in [6] use a tensor approach to perform
supervised channel estimation. Then, [7] proposes a
tensor-based receiver formulated as a semi-blind problem that
jointly estimates the involved channels and transmitted data.
However, these two works assume (quasi-)static channels and
do not consider the aging problem, which is likely to be
present due to user mobility. Finally, it is worth noting that
the impact of channel aging in multiple input multiple output
(MIMO) and IRS-assisted systems has been studied in [9]–[12]
while the geometrical structure of the channel has not been
exploited.

In this letter, we propose a signal modeling that exploits
the geometric channel structure of the IRS-assisted MIMO
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network to estimate the spatial signatures of the network.
The time-varying fading coefficients are modeled by means
of an auto-regressive (AR) model with each channel changing
independently at different time scales. Then, we formulate a
two-stage tensor-based framework for parameter estimation
and data-aided tracking. In the first stage, referred to as
PARAFAC-Khatri-Rao-Kronecker factorization (PARKRON),
the estimation of channel steering vectors (static parameters)
is carried out by means of a constrained tensor-based solution.
Then, in the second stage, referred to as Tucker-based tracking
(TBT), we perform data-aided tracking of channel fading
coefficients and symbol detection. Simulation results show
that our proposed method accurately tracks the cascaded
channel while outperforming competing methods in terms of
normalized mean squared error (NMSE).

Notation: Scalars, vectors, matrices, and tensors are
represented by a,a,A, and A. Also, A∗, AT, AH, and
A† stand for the conjugate, transpose, Hermitian, and
pseudo-inverse, of a matrix A. The jth column of A ∈
CI×J is denoted by aj ∈ CI×1. The operator vec(·)
transforms a matrix into a vector by stacking its columns,
e.g., vec(A) = a ∈ CIJ×1, while the unvec(·)I×J operator
undo the operation. The operator D(·) converts a vector into
a diagonal matrix, Dj(B) forms a diagonal matrix R×R out
of the jth row of B ∈ CJ×R. Also, IN denotes an identity
matrix of size N × N . The symbols ⊗ and � indicate the
Kronecker and Khatri-Rao products.

II. SYSTEM MODEL

We consider an uplink IRS-assisted MIMO scenario with a
base station (BS) equipped with M receiver antennas, which
receives a signal from a user equipment (UE) equipped with
Q transmit antennas via a passive IRS with N reflecting
elements. The transmission protocol is structured as I frames
each one containing K + 1 blocks. The first block has length
T0 symbol periods, while the remaining K blocks have length
(Tp + Td), as shown in Fig 1. The first block (k = 1) of each
frame is dedicated to pilot-aided parameter estimation, and the
received signal is given by

yi,1,t=GiD(st)Hi,1zi,t + vi,1,t ∈ CM×1, (1)

where zi,t is the pilot sequence and vi,1,t is the additive white
Gaussian noise (AWGN) vector with t ∈ {1, · · · , T0}. For the
remaining K blocks, the received signal can be written as

Yi,k = GiD(sopt)Hi,kXi + Vi,k ∈ CM×(Tp+Td), (2)
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where Yi,k = [Y (p)
i,k |Y

(d)
i,k ] ∈ CM×(Tp+Td) and Xi =

[X (p)
i |X

(d)
i ] ∈ CQ×(Tp+Td) are the received and the transmitted

signals containing both pilots and data, spanning T =
Tp + Td symbol periods each, where the pilot signals
Y (p)
i,k = [Y (p)

i,k,1, · · · ,Y
(p)
i,k,Tp

] ∈ CM×Tp and X (p)
i =

[X (p)
i,1, · · · ,X

(p)
i,Tp

] ∈ CQ×Tp have a duration of Tp symbols
and the data signals Y (d)

i,k = [Y (d)
i,k,1, · · · ,Y

(d)
i,k,Td

] ∈ CM×Td

and X (d)
i = [X (d)

i,1, · · · ,X
(d)
i,Td

] ∈ CM×Td have a duration of
Td symbols, respectively, in accordance to Fig. 1. At the time
instant t, D(st) is the IRS phase-shift matrix, D(sopt) the IRS
optimal phase-shift matrix obtained at the first block (k = 1),
X (p)
i is the pilot sequence, X (d)

i is the data sequence.
We assume that the IRS-UE link changes faster due to

mobility while the BS-IRS link changes more slowly due
to possible changes in interference. Specifically, the IRS-UE
channel Hi,k changes between blocks within a given frame,
while the BS-IRS channel Gi changes at a larger time scale,
remaining constant during a frame of K + 1 blocks while
varying across the I frames. Assuming a mmWave scenario,
we adopt a multipath channel model [13] for the involved
channels. We can express these channel matrices as follows

Gi = ArxD(αi)B
H
tx ∈ CM×N , (3)

Hi,k = BrxD(βi,k)AH
tx ∈ CN×Q, (4)

where Arx and Brx are the steering matrices defined as

Arx =
[
arx(µ

(1)
bs ), · · · ,arx(µ

(L1)
bs )

]
∈ CM×L1 ,

Brx =
[
b(irs)

rx
(µ

(1)
irsA
, ψ

(1)
irsA

), · · · , b(irs)
rx

(µ
(L2)
irsA

, ψ
(L2)
irsA

)
]
∈ CN×L2 ,

with Btx and Atx being defined similarly. The lth BS steering
vector a(µ

(l1)
bs ) is associated with the spatial frequency µ(l1)

bs =

πcos(φ(l1)bs ), with φ(l1)bs being the angle of arrival (AoA), which
can be further written as

arx(µ
(l1)
bs ) =

[
1, · · · , e−jπ(M−1)µ

(l1)

bs

]T
∈ CM×1. (5)

Similarly, the pth one-dimensional steering vector for the UE is
c(µ

(l2)
ue ) having spatial frequency, which is defined as µ(l2)

ue =

πcos(φ(l2)ue ), with φ
(l2)
ue being the angle of departure (AoD),

and can be written in terms of spatial frequency as

atx(µ
(l2)
ue ) =

[
1, · · · , e−jπ(Q−1)µ

(l2)
ue

]T
∈ CQ×1. (6)

At the IRS, b(irs)
rx (µ

(l2)
irsA

, ψ
(l2)
irsA

) is the 2D steering vector with
spatial frequencies µ(l2)

irsA
= πcos(φ(l2)irsA

)sin(θ
(l2)
irsA

) and ψ
(l2)
irsA

=

πcos(φ(l2)irsA
), where φ(l2)irsA

and θ
(l2)
irsA

are the azimuth AoA and
the elevation AoA, respectively. This can be further written as
the Kronecker product between two steering vectors as

b(irs)
rx

(µ
(l2)
irsA

, ψ
(l2)
irsA

) = b(irs)
rx

(µ
(l2)
irsA

)⊗ b(irs)
rx

(ψ
(l2)
irsA

) ∈ CN×1. (7)

The IRS transmission steering vector, b(irs)H
tx (µ

(l1)
irsD

, ψ
(l1)
irsD

), is
defined similarly. The IRS phase-shift vector is defined as st =[
ejθ1,t , · · · , ejθN,t

]T ∈ CN×1, where θn,t is the phase-shift of
the nth IRS element at the tth time slot. Moreover, αi =
[α

(1)
i , · · · , α(L1)

i ]T ∈ CL1×1 and βi,k = [β
(1)
i,k , · · · , β

(L2)
i,k ]T ∈

Fig. 1: Time-domain transmission protocol.

CL2×1 collect the path loss and fading components of the
BS-IRS and IRS-UE links, respectively.

The aging effects are modeled by assuming that αi ∈
CL1×1 and βi,k ∈ CL2×1 vary according to first-order AR
processes defined as [9]

αi = δαi−1 + ζi, i = 1, . . . , I, (8)

βi,k =

{
λβi−1,K + ξi,k, k = 1,

λβi,k−1 + ξi,k, k = 2, · · · ,K,
(9)

where ζi ∼ CN (0, (1 − δ2)IL1
) ∈ CL1×1 and ξi,k ∼

CN (0, (1− λ2)IL2) ∈ CL2×1 are the AR process noise term
for the BS-IRS and IRS-UE links with δ and λ being their
correlation coefficients [10], respectively.

III. PILOT-BASED PARAMETER ESTIMATION

In this section, we formulate the parameter estimation
problem and describe the IRS phase-shift configuration
approach shown in Algorithm 1 (PARKRON). Here, we
estimate the channel parameters, i.e., the array steering
matrices and the complex channel gains of the first block
(k = 1) from all frames.

A. Tensor-Based Parameter Estimation

In this section, we formulate a tensor-based approach to
estimate the channel parameters. Using vec(ABC) = (CT⊗
A)vec(B) and vec(AD (b)C) = (CT �A)b in (1), yields

yi,1,t = vec (IMGiD(st)Hi,1zi,t) + vi,1,t ∈ CM×1,
= (sT

t ⊗ zT
i,t ⊗ IM )vec(HT

i,1 �Gi) + vi,1,t.

Collecting the signals during the T0 symbol periods yields

yi,1 =
[
yT
i,1,1, · · · ,yT

i,1,T0

]T
,

= [(S �Zi)T ⊗ IM ]vec(HT
i,1 �Gi) + vi,1 ∈ CMT0×1,

= Ωiu+ vi,1 ∈ CMT0×1, (10)

where S = [s1, · · · , sT0
] ∈ CN×T0 , Zi = [zi,1, · · · , zi,T0

] ∈
CQ×T0 are matrices collecting the IRS phase-shifts and pilots,
Ωi = (S �Zi)T⊗ IM ∈ CMT0×MQN , u = vec(HT

i,1 �Gi) ∈
CMQN×1, and vi,1 =

[
vT
i,1,1, · · · ,vT

i,1,T0

]T ∈ CMT0×1 is the
AWGN noise term. From (10), we obtain the following least
squares (LS) problem

ûi = arg min
ui

||yi,1 −Ωiui||22 , (11)



3

where the solution requires T0 ≥ QN and is given by

ûi = Ω†iyi,1 ∈ CMQN×1. (12)

Let us define Ri = unvecMQ×N (ûi) ≈HT
i,1�Gi ∈ CMQ×N .

Using (3) and (4), while applying property (AC) � (BD) =
(A⊗B)(C �D), we have

Ri ≈ [A∗tx D(βi)B
T
rx

] � [Arx D(αi)B
H
tx ],

≈(A∗tx⊗Arx)[D(βi)⊗D(αi)](B
T
rx
�BH

tx ). (13)

Defining F = [f1, · · · ,fI ]T ∈ CI×L1L2 with fi = βi⊗αi ∈
CL1L2×1, (13) can be expressed as

Ri ≈ (A∗tx ⊗Arx)Di(F )P T
B ∈ CMQ×N , (14)

where PB = (BT
rx
� BH

tx ) ∈ CN×L1L2 combines the IRS
transmit and receive steering matrices. The collection of
matrices {R1, . . . ,RI}, in (14) over all frames i ∈ {1, . . . , I}
can be arranged as a fourth-way tensor R ∈ CM×Q×N×I ,
which can be expanded in terms of n-mode products as

R ≈ I4,L1L2 ×1 (ArxΨ)×2

(
A∗txΦ

)
×3 PB ×4 F , (15)

where Ψ = 1T
L1
⊗ IL2

∈ RL2×L1L2 and Φ = IL1
⊗ 1T

L2
∈

RL1×L1L2 are constraints matrices. This tensor structure
follows a constrained PARAFAC decomposition, which can
also be interpreted as a constrained factor decomposition [14]
or parallel profiles with linear dependencies decomposition
[15]. Assuming that the BS and the IRS have fixed and
known locations, it is reasonable to consider that the angular
information between the IRS and the BS is known, i.e.,
we assume the knowledge of the steering matrix Arx .
Consequently, the estimation of Atx , PB and F consists of
solving the following problem{
Âtx , P̂B , F̂

}
= arg min
Atx ,PB ,F

∣∣∣∣∣
∣∣∣∣∣R− I4,L1L2

×1 (ArxΨ)

×2

(
A∗txΦ

)
×3 PB ×4 F

∣∣∣∣∣
∣∣∣∣∣
2

F

, (16)

which can be performed by means of the well-known
alternating least squares (ALS) algorithm (see [16], [17] for
details), which delivers estimates of the involved steering
matrices up to scaling ambiguities provided that the necessary
conditions QNI ≥ L1L2, QMI ≥ L1L2, and QMN ≥
L1L2 are satisfied [15]. These conditions are related to
the uniqueness of the LS estimates of A∗tx , PB , and F ,
respectively. The scaling ambiguities can be easily removed
since the steering matrices have a Vandermonde structure.

B. Khatri-Rao and Kronecker Factorizations

To obtain individual estimates of the steering matrices
Brx and Btx , as well as the fading coefficients fβi and αi,
Khatri-Rao factorization (KRF) and Kronecker factorization
(KF) procedures are applied by solving the following problems{

B̂tx , B̂rx

}
= arg min

B̂rx ,B̂tx

∣∣∣∣∣∣P̂B −BT
rx
�BH

tx

∣∣∣∣∣∣2
F
, (17)

{
β̂i, α̂i

}
= arg min

βi,αi

∣∣∣∣∣∣f̂i−βi⊗αi∣∣∣∣∣∣2
2
, i∈{1, · · · , I}, (18)

the solutions of which are obtained by the KRF and KF
algorithms as in [6] and [7], respectively. The estimated and

Algorithm 1 Stage 1 (PARKRON)

1: Transmit pilot signals with (1).
2: Estimate ûi = Ω†yi ∈ CMQN×1.
3: Build Ri = unvecMQ×N (ûi).
4: From {R1, . . . ,RI}, build the tensor R in (15).
5: Estimate Âtx , P̂B , and F̂ by solving (16) using ALS.
6: Estimate B̂T

rx
and B̂H

tx by solving (17) using KRF.
7: Estimate F̂α and F̂β by solving (18) using KF.
8: Rebuild R̂1 = (Â∗tx ⊗ Arx)D1(F̂ )P̂ T

B and configure the
IRS phase shifts from its dominant right singular vector.

Algorithm 2 Stage 2 (TBT)

1: Build the pilot tensor Y(p)
i in (19)

2: Obtain an initial estimate F̂i according to (20).
3: Build the data tensor Y(d)

i in (21).
4: Estimate X̂(d)

i and refine F̂i by solving (22) using BALS.

true matrices are linked as B̃tx = Btx∆Btx
, B̃rx = Brx∆Brx

,
with ∆Btx

∆Brx
= IL1L2 . Note that since these matrices have

a Vandermonde structure, these scaling ambiguities can be
removed by simple column normalization.

IRS phase-shift configuration: Upon estimation of the static
channel parameters, IRS configuration is accomplished. Let
R̂1 = (Â∗tx ⊗ Arx)D1(F̂ )(B̂T

rx
� B̂H

tx )T be the reconstructed
version of the combined channel in the first frame. The vector
sopt =

[
ejθ1,opt , · · · , ejθN,opt

]T
containing the configured IRS

phase shifts can be found from the dominant right singular
vector of R1 = UΣV H, which gives sopt = e−j∠v

∗
1 .

IV. CHANNEL TRACKING AND SYMBOL DETECTION

Under aging effects, the initial channel parameter estimates
obtained in the first stage can quickly become outdated. This
means that a further procedure is needed to track changes due
to aging, if we intend to detect the transmitted symbols. To this
end, we formulate the second stage of the proposed receiver,
which is dedicated to channel tracking and symbol detection
based on the estimated steering matrices in the first stage.

A. Initialization

From the pilot part of the received signal in (2), we have

Y
(p)
i,k = Arx D(αi)JD(βi,k)CT

i + V
(p)
i,k ∈ CM×Tp ,

where J = BH
tx D(sopt)Brx , CT

i = AH
txX

(p)
i , and V (p)

i,k is the
associated AWGN component. Defining y(p)

i,k = vec(Y
(p)
i,k ) and

using the equivalence
(
aT �B

)
= BD(a) yields

y
(p)
i,k = (Ci ⊗Arx) vec(D(αi)JD(βi,k)) ∈ CMTp×1,

=(Ci⊗Arx)D(vec(J))(βi,k⊗αi) + v
(p)
i,k .

Then, defining Y (p)
i = [y

(p)
i,1 , . . . ,y

(p)
i,K ] ∈ CMTp×K collecting

all remaining K blocks, we have

Y
(p)
i =(Ci⊗Arx)D(vec(J))(Fβi

�Fαi
)

T
+ V

(p)
i ,

where Fαi = 1T
K⊗αi ∈ CL1×K , Fβi = [βi,2, · · · ,βi,K+1] ∈

CL2×K , and V (p)
i is the corresponding noise term. Note that
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Fig. 2: Block-diagram of the proposed receiver.

D(vec(J)) ∈ CL1L2×L1L2 can be viewed as the 3-mode
unfolding of the tensor J ∈ CL1×L2×L1L2 written as [18]

J =
(
I3,L2 ⊗

2,3
2,3 I3,L1

)
×3 vec(J) ∈ CL1×L2×L1L2 ,

where I3,L2
and I3,L1

are identity tensors and ⊗2,3
2,3 is the

selective Kronecker product (SKP) [18], from which we obtain

Y(p)
i = J ×1 Arx ×2 Ci ×3 F

T
i + V(p)

i ∈ CM×Tp×K , (19)

where Fi = Fβi
�Fαi

∈ CL1L2×K is the combined fading
matrix. The 3-mode unfolding of the tensor is defined as

[Y(p)
i ](3) = F T

i [J ](3) (Ci ⊗Arx)
T ∈ CK×MTp ,

from which an LS estimate of Fi can be obtained as

F̂i=
[
[Y(p)
i ](3)

(
[Ĵ ](3)(Ci⊗Arx)

T
)†]T

∈CK×L1L2 . (20)

This initial LS step requires that [J ](3) (Ci ⊗ Arx)
T ∈

CL1L2×MTp have full row rank, which implies MTp ≥ LP .

B. Joint Tracking and Symbol Detection

From the data part of the received signal in (2), we have

Y
(d)
i,k = Arx D(αi)JD(βi,k)AH

txX
(d)
i + V

(d)
i,k ∈ CM×Td ,

which can be reformulated in tensor form as

Y(d)
i =J×1Arx×2(AH

txX
(d)
i )T×3F

T
i +V(d)

i ∈C
M×Td×K (21)

The 2-mode and 3-mode unfoldings of Y(d)
i are given by[

Y(d)
i

]
(2)

= (AH
txX

(d)
i )T [J ](2)

(
F T
i ⊗Arx

)T ∈ CTd×MK ,[
Y(d)
i

]
(3)

= F T
i [J ](3)

[
(AH

txX
(d)
i )T ⊗Arx

]T
∈ CK×TdM .

Our joint tracking and symbol detection TBT algorithm
consists of estimating the data matrix X(d)

i while refining the
estimate of Fi initialized with (20) by solving{

X̂
(d)
i , F̂i

}
= arg min
X

(d)
i ,Fi

∣∣∣∣∣
∣∣∣∣∣ Y(d)

i − J ×1 Arx

×2(AH
txX

(d)
i )T ×3 F

T
i

∣∣∣∣∣
∣∣∣∣∣
2

F

, (22)

whose LS solutions are given by

X̂
(d)
i =

[[
Y(d)
i

]
(2)

(
A∗tx [J ](2) (F̂ T

i ⊗Arx)
T
)†]T

, (23)

F̂i=

[[
Y(d)
i

]
(3)

(
[J ](3)

(
(AH

txX
(d)
i )T⊗Arx

)T
)†]T

. (24)

TABLE I: Computational complexity
.

Algorithm Computational Complexity
PARKRON O(L1L2(3ALSiter(L1L2)2 +N + I))

TBT O((L1L2)3(1 + 2BALSiter))
KRF O(IKNL1L2)

The estimates of X(d) and Fi are obtained by alternating
between the LS steps (23) and (24) using the bilinear
alternating least squares (BALS) algorithm [6], which requires
MK ≥ Q and MTd ≥ L1L2. A summary of the channel
tracking and symbol detection stage is shown in Algorithm 2.

Table I contains a summary of the computational
complexities of the proposed PARKRON and TBT algorithms,
as well as that of the competing KRF algorithm [6] used as a
benchmark. The terms ALSiter and BALSiter denote the number
of iterations required for the convergence of the PARKRON
and TBT algorithms, respectively. These results consider
O(N1N2) as the complexity associated with the rank-one
approximation of a matrix A ∈ CN1×N2 . Since the KRF
algorithm is a closed-form solution, it has lower computational
complexity than the proposed receiver. However, note that
KRF is limited to obtaining the unstructured estimates of Gi

and Hi,k, i.e., it does not provide estimates of the channel
parameters since the associated channel structures are not
exploited. A block diagram of the overall receiver processing,
including the first and second stages. is shown in Fig. 2.

V. SIMULATION RESULTS

We evaluate the performance of the proposed tensor-based
algorithm by comparing it with the reference parameter
estimation method based on the KRF [6]. The pilot signal
matrix X(p) is designed as a Hadamard matrix and the
data signal matrix X(d) follows a binary phase-shift keying
(BPSK), while a discrete Fourier transform (DFT) is adopted
for the IRS phase-shift matrix S. The angular parameters φ(l1)bs
and φ(l2)ue are randomly generated from a uniform distribution
between [−π, π] while the IRS elevation and azimuth angles of
arrival and departure are randomly generated from a uniform
distribution between [−π/2, π/2]. The fading coefficients
αi and βi,k are modeled as independent Gaussian random
variables CN (0, 1). The parameter estimation accuracy is
evaluated in terms of the NMSE given as NMSE(Q) =

E{
∣∣∣∣∣∣Q(e) − Q̂(e)

∣∣∣∣∣∣2
F
/
∣∣∣∣Q(e)

∣∣∣∣2
F} with Q ∈ {Ri,Wi,k} being

Ri = (HT
i �Gi) and Wi,k = Gidiag(sopt)Hi,k being used

at the evaluation of the first stage and second stage at the
eth run, E = 104 being the number of Monte Carlo runs.
Symbol detection performance in the second stage is evaluated
in terms of the bit error ratio (BER). Unless otherwise stated,
the training SNR is set to 30 dB and the parameters are {M =
2, Q = 2, L1 = 2, L2 = 2, N = 32, T0 = T = 64, Tp =
16, Td = 48, I = 2,K = 5, λ = 0.75, and δ = 0.75}.

In Fig. 3, we compare the NMSE performance of the
proposed technique at the first stage. We take the NMSE of
Ri after the PARAFAC ALS estimation and for comparison,
we use the classical LS and KRF [6] estimators. We notice
that the PARKRON and KRF algorithms both outperform the
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Fig. 6: BER as a function of the
number of reflecting elements.

LS technique by approximately 5 dB, almost independently
of the SNR. In Fig. 4, we take the NMSE of Wi,k

after the TBT algorithm and compare our method with the
KRF [6]. We note that, for different SNRs, the proposed
PARKRON-TBT algorithm outperforms the KRF [6] with an
approximate 13 dB gain. This could be explained by how
the proposed technique exploits the channel geometry while
the KRF [6] does not take advantage of the approximately
fixed geometry of the transmission. However, KRF [6] is a
closed-form solution having complexity O(IKNL1L2). In
comparison, our proposed framework is an iterative solution
with the complexity of O(L1L2(3ALSiter(L1L2)2 +N + I) +
(L1L2)3(1 + 2BALSiter)). Thus, our gains in NMSE come at
the cost of greater computational complexity.

In Fig. 5, we study the effect of the number of pilot-reserved
time slots, Tp, on the BER of the proposed algorithm. We
observe that the BER improves as a function of the number
of pilots as well as the SNR, as expected. Since the size of
each block is set to T = 64 the saturation point of each curve
is close to Tp = 16 (or 25% of the available time-slots). In
Fig. 6, we evaluate the impact of the number N of reflecting
elements. Since the number of reflecting elements is directly
linked to the size of the blocks at the first stage, T0, as
we increase N we have better estimations of the combined
channel parameters in (12) since we sense the channel longer.
For the proposed scenario, the performance gains of increasing
N , only to achieve better BER performance, seems too low to
justify the increased algorithm complexity.

VI. CONCLUSION

We proposed a two-stage framework for channel parameter
estimation, tracking and symbol detection for MIMO
IRS-assisted communications under a double-channel aging
model. The proposed scheme estimates the static parameters
in the first stage to initialize a second stage dedicated to
data-aided tracking of the aging process to estimate the
transmitted data symbols. The proposed PARKRON-TBT
framework efficiently exploits the higher-order tensor structure
of the considered channel aging model, providing improved
performance over competing channel estimation schemes that
do not exploit the double aging structure for tracking purposes
at the cost of higher computational complexity.
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