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Abstract

To achieve high data rates defined in 5G, the use of millimeter-waves and
massive-MIMO are indispensable. To benefit from these technologies, an ac-
curate estimation of the channel parameters is crucial. We propose a novel two-
stage algorithm for channel parameters estimation. In the first stage, coarse
estimation is accomplished by applying parameter estimation via interpolation
based on a DFT grid (PREIDG) with a fixed look-up table (LUT), while the
second stage refines the estimates by means of the space-alternating generalized
expectation maximization (SAGE) algorithm. The two-stage algorithm uses dis-
crete Fourier transform beamforming vectors which are efficiently implemented
by a Butler matrix in the analog domain. We found that this methodology im-
proves the estimates compared to the auxiliary beam pair (ABP) method. The
two-stage algorithm shows efficient performance in the low signal to noise ratio
regime for the channel parameters i.e. angles of departure, complex path gains
and delays of the multipaths. Finally, we derived the Cramér-Rao lower bound
(CRLB) to assess the performance of our two-stage estimation algorithm.
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1. Introduction

Millimeter-Waves and massive multiple-input-multiple-output (MIMO) are
the two essential candidates to achieve the high promising data rates for the
fifth generation (5G) cellular systems [1, 2]. On one hand, introducing high
frequencies will facilitate the introduction of large antenna arrays at the base
station (BS), which will end up with high beamforming gains but on the other
hand, the large bandwidth in mmWaves with large antenna arrays impose the
challenge of hardware implementation [3]. Therefore, energy efficiency with ad-
dition to spectral efficiency becomes an important design goal.
In order to fully exploit the benefit of using large antenna arrays both at the
transmitter and receiver, full digital precoding is used, which means all signal
processing is done in the baseband, introducing the cost of one radio frequency
(RF)-chain per antenna, which turns out with high implementation complexity
in addition to power consumption. Multiple solutions are proposed to cater for
this challenge including less number of RF-chains termed as hybrid beamform-
ing [4, 5, 6, 7] and low resolution analog-to-digital converter (ADC)s [8, 9, 10].
Another practical example in mobile communication is hybrid beamforming
designed to overcome the implementation and energy challenges in mmWave
massive-MIMO precoding. In hybrid beamforming, a small number of RF-chains
are introduced to excite a large number of antenna elements both at the trans-
mitter and receiver. Unlike full digital beamforming, the hybrid beamforming
is separated into two different parts, one is the baseband digital precoding and
the other is the analog beamforming implemented at RF domain [11, 12, 13].
Therefore, beamforming needs information about the random wireless channel.
Recently, many techniques have been studied to solve the channel estimation
problem in mmWave systems by exploiting the sparsity of the mmWave channel.
The works [14, 15, 16, 17] discuss channel parameter estimation based on com-
pressed sensing (CS) theory by exploiting the sparsity, especially in mmWave
channels. In [14], a CS-based channel parameter estimation is applied in a
practical scenario and in a controlled environment, which turns out to be more
attractive as compared to the exhaustive search methods. In [15], the frequency
selective case is considered and a CS-based algorithm is proposed to estimate
the channel parameters assuming a hybrid architecture with quantized phase
shifters. In [16], a two-stage algorithm is introduced for position and orienta-
tion estimation. In the first stage, a modified version of the so-called distributed
compressed sensing-simultaneous orthogonal matching pursuit (DCS-SOMP) al-
gorithm [18] is used on a predefined grid, while in the second stage the space-
alternating generalized expectation maximization (SAGE) algorithm [19] is used
for the refinement of the channel parameter estimates. However, the paper does
not shed light on the selection of beamformer, which is an important issue in
the design of efficient hybrid architectures. In [17], a low complexity orthogonal
matching pursuit (OMP) algorithm is introduced by exploiting the correlation
in the angular domain from a priori statistical information about scattering.
The algorithm, however, only considers flat fading channels.
In [20, 21, 22, 23], the auxiliary beam pair (ABP) method is proposed and
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discussed, which is based on a set of beam pairs to estimate the AoD. In the
ABP method, by forming many beam pairs, a set of many ratios is calculated
to estimate the corresponding AoD. The authors showed that the ABP method
outperforms the grid of beams (GoB) method [24]. Furthermore, authors in [25]
showed that the ABP method outperforms the standard CS techniques such as
OMP [26] and adaptive codebook method [27]. Furthermore, in our previous
work [28], the DFT beams are implemented in the analog domain using a Butler
matrix (BM) to estimate the channel via a maximum likelihood (ML) approach
for a single path (frequency flat) scenario.
In this paper, we extend the previous work [28] and generalize it to the frequency
selective channel model, for which the time-delay of each path is also taken into
account in the algorithm design. This turns the channel parameter estimation
into a non-linear optimization problem, which is solved with the SAGE algo-
rithm as an approximation to the ML estimator in our scenario. In addition,
we propose the column vectors of a DFT matrix, to probe the channel with
constant amplitude zero autocorrelation (CAZAC) sequences [29, 30, 31]. Their
constant amplitude property allows us to operate the power amplifier (PA) near
to the saturation region and the set of beamforming vectors can be implemented
at RF with the Butler matrix. This structure has an improved energy-efficiency
and avoids the need for adaptive RF- phase shifters [32]. Our contributions can
be summarized as follows:

• We perform an ad-hoc estimation based on our proposed algorithm, herein
referred to as PREIDG (parameter estimation via interpolation based on
a DFT grid) to coarsely estimate the model order (number of paths) and
the parameters of these paths using a fixed look-up table (LUT). The
proposed PREIDG algorithm outperforms the ABP method [20, 23].

• The accuracy of the estimates can be further improved/refined if necessary,
by using them as initialization of the SAGE algorithm to obtain the ML
estimates. New expressions are derived for channel parameter estimation
in the multiple-input-single-output (MISO) case.

• We derive the Cramér-Rao lower bound (CRLB) to assess the performance
of our two-stage estimation algorithm.

Notation: a (lower case italic letters) denote scalars, a (bold lowercase letters)
denote vectors and A (bold upper case letters) denote matrices; IM represents
identity matrix of size M×M ; 1M denote all ones matrix of M×M dimensions;
⊙ represents Hadamard product; (·)H represents conjugate transpose; E [·] rep-
resents expectation; ⌊.⌋ represents floor operator; tr{.} represents trace of the
matrix and mod(.) represents modulus, respectively.

2. System Model

2.1. System Architecture

To overcome the energy consumption and hardware complexity due to the
use of massive MIMO and mmWaves, hybrid beamforming is introduced to cater
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Figure 1: Fully connected analog phase shifting network.

for the reduction of RF-chains. In practice, there are two approaches in hybrid
beamforming, one is based on a fully connected analog phase shifting (FCAPS)
network and the other is based on a partially connected analog phase shifting
(PCAPS) network. Both methodologies have their own pros and cons.
In both the strategies dividers are used which divide the signals from the RF-
chains to the many phase shifters (PSs). The combiner is only used in the
FCAPS network. Although the power dividers are theoretically lossless, for in-
stance, Wilkinson splitter, the combiners are not.
In the FCAPS network, NRFN adaptive phase shifters are used, where NRF is
the total number of RF-chains and N is the total number of transmit antennas
as shown in Figure 1. In FCAPS network, at the input of each power amplifier
and antenna, NRF signals have to be combined which introduces losses. The
losses depend on the mutual correlation of the precoded signals to be combined
which obviously depends on the estimated propagation channel. On one hand
the benefit of using FCAPS network, we can form narrow beams using all N an-
tennas simultaneously, but on the other hand, there are quite significant losses
in the analog domain by the combination of signals which are channel depen-
dent. For instance, if we have NRF = Ns = 2q, data streams, the combination
of Ns uncorrelated data streams will have a power loss of q × 3 dB. On top of
that, there come losses due to the parasitics especially at mmWaves.
To avoid these significant losses, we use the PCAPS approach as in Figure 2,
where the combination of the signals in the RF-domain is avoided. In the
PCAPS network, we divide the total number of transmit antennas N into
NRF sub-arrays, where each sub-array has M antenna elements leading to
N = NRFM . In this approach, each sub-array gets its signal from one RF-
chain. In this architecture, no combiner is required before the input of each
antenna. With this, there will be no losses due to the combination of signals
in the analog domain but also the number of adaptive phase shifters will be
reduced from NRFN to NRFM .
Furthermore, to avoid the implementation of adaptive phase shifters, the PCAPS
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Figure 3: 90◦ hybrid coupler.

network, can be implemented by introducing the BM, which is the analog im-
plementation of the DFT matrix as shown in Figure 2.
The M beams of the DFT matrix are implemented using M

2 log2 M (90◦ hy-
brids) and a number of fixed phase shifters. The 90◦ hybrid is theoretically
a lossless 4 - port as shown in Figure 3, which is described by the following
scattering matrix







b1
b2
b3
b4






=

1√
2







0 −j −1 0
−j 0 0 −1
−1 0 0 −j
0 −1 −j 0













a1
a2
a3
a4






. (1)

Properly terminating all ports and with no incoming waves at ports 2 and 3
(a2 = 0, a3 = 0), resulting with no reflected waves at ports 1 and 4 (b1 = 0, b4 =
0), therefore (1) can be reduced to

[
b2
b3

]

=
−1√
2

[
j 1
1 j

] [
a1
a4

]

. (2)

An example of the BM structure with M = 8 is shown in Figure 4, the output
signals of the BM excited by one RF-chain connected to one input will be
supplied to the M power amplifiers and the M antenna elements of each sub-
array, which will result in utilizing one column of DFT matrix as beamforming
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Figure 4: A M × M , BM with M

2
log2 M , 90◦ hybrids and fixed PSs only, where w =

exp(−j 2π

M
) for M = 8.

vector.
Now let us consider the input power Pin to a 90◦ hybrid at input port 1 and
port 4 as P1 and P4 respectively. The 90◦ hybrid will divide the power to the
output port 2 and port 3, where only one of them will be used, as in Figure 3.
The input power can be written as

Pin = P1 + P4 = E
[
|a1|2

]
+ E

[
|a4|2

]
, (3)

and the output power at port 2 as

Pout2 = E
[
|b2|2

]
=

1

2

(

E
[
|a1|2

]
+ E

[
|a4|2

]
− 2Im{ρ}

√

E [|a1|2]E [|a4|2]
)

, (4)

where ρ is the correlation coefficient and is given as

ρ =
E [a1a

∗
4]

√

E [|a1|2]E [|a4|2]
. (5)

If both the signals at port 1 and port 4 are uncorrelated, i.e., ρ = 0, then
Pout2 = 1

2Pin, which means half of the power is lost due to the uncorrelated
signals. However, in the BM architecture as shown in Figure 4, always both the
outputs of each 90◦ hybrid are used and no power is lost.

2.2. Signal Model

We consider a single-user downlink scenario, where the user is equipped with
a single antenna. The transmitter has PCAPS network architecture as shown
in Figure 2 and equipped with a total number of N antennas having M number
of antennas at each sub-array. The sub-arrays are controlled by NRF chains
following N = NRFM . The signal model based on the sub-array design and
without loss of generality can be given as

yT
k =

√

PT

R∑

r=1

αr aH(µr)w(Φk)c
T
k (τr) + nT

k ∈ C
1×L, (6)
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(6) is the received vector for the user based on one sub-array with the kth
beamforming vector. PT represents the transmit power, αr is the complex path
coefficient of the given path r and n is the random noise vector with Gaussian
distribution n ∼ CN (0L×1, σ

2
nIL), where σ2

n is the noise variance. ck(τr) is the
pilot sequence for k-th beamforming vector w(Φk), where τr is the delay of each
path-r. The channel steering vector a(µr) for uniform linear array (ULA) and
beamforming vector w(Φk) are given as

a(µr) = [1, e−jµr , . . . , e−j(M−1)µr ]T ∈ C
M×1, (7)

w(Φk) =
1√
M

[

1, e−jΦk , . . . , e−j(M−1)Φk

]T

∈ C
M×1, (8)

The w(Φk) is k+1 th column of a DFT matrix of size M , where Φk = 2π
M
k, k =

0, . . . ,M − 1. µr is the spatial frequency of each path r where µr = 2π d
λ
sin θr.

θr is the angle of departure (AoD) of each path r and d is the distance between
antenna elements respectively.
The CAZAC sequence specific for each beamforming vector is ck, where each of
the CAZAC sequence symbol is constructed as

c(n) = e

(

j 2π√
L
(mod{n,√L}+1)

(⌊

n√
L

⌋

+1
)

+j π
4

)

, (9)

where n ∈ {0, 1, . . . , L− 1} and ck(n) = c(n− k). By considering the length of
the CAZAC sequence L = 16 helps in forming the CAZAC symbols as QPSK

symbols c(n) ∈
{

1√
2
(±1± j)

}

, which is useful because of the constant modulus

allow us to operate the PA near the saturation region. The CAZAC sequence
for first beamforming vector is represented as

c0(0) = [c(0), c(1), . . . , c(L− 1)]
T ∈ C

L×1. (10)

ck, where k = 0, . . . ,M − 1 are shifted wrap around versions of c0 and assigned
each wrap around to a specific beamforming vector.
By probing the channel with each beamforming vector w(Φk) with its corre-
sponding CAZAC sequence ck and then collecting all the received vectors yk in
matrix Y can be represented as

Y =








yT
0

yT
1
...

yT
M−1







=

=
√

PT

R∑

r=1

αrA(µr)








cT0 (τr)
cT1 (τr)

...
cTM−1(τr)








︸ ︷︷ ︸

=C(τr)

+








nT
0

nT
1
...

nT
M−1








︸ ︷︷ ︸

=N

∈ C
M×L, (11)

where A(µr) = diag{aH(µr)w(Φk)}M−1
k=0 and the noise covariance matrix is

R = E
[
vec{N} vec{N}H

]
= σ2

nIML.
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3. Parameter Estimation via Interpolation based on a DFT Grid
(PREIDG) based coarse estimation

We are now probing the channel with all M beamforming vectors, one at a
time with one specific CAZAC sequence of length L, preferably L = M . There
is a strict correspondence between w(Φk) and ck. This way the user equipment
(UE) observes M consecutive receive sequences yk (6) and multiplies each of
them with the already stored CAZAC sequence c∗k. This can be cast in a matrix

Z = YCH(0) =
√

PT

R∑

r=1

αrA(µr)C(τr)C
H(0) +NCH(0), (12)

For simplicity, let us first assume that each of the R AoD’s, µr is equal to one
of the Φk. Then we get

A(µr) = diag
{
aH(µr)w(Φk)

}M−1

k=0

∣
∣
∣
∣
∣
µr=Φkr

=
√
M ekr+1e

T
kr+1, (13)

where ekr+1 is the M - dimensional (kr +1) canonic unit vector. In addition, let
us assume that each of the R delays are integer multiples of the symbol period
leading to

C(τr)C
H(0)

∣
∣
∣
∣
τr=ir

= MPir , (14)

where Pir is the M × M , permutation matrix of the following form, by using
the canonic unit vector e,

Pir =

M∑

j=1

eje
T
j+ir

=




















0 . . . 0 1 0 0 . . . 0
0 . . . 0 0 1 0 . . . 0
... . . .

...
... . . .

. . . . . .
...

... . . .
...

... . . . . . .
. . .

...

0 . . .
...

... . . . . . . . . . 1

1 . . .
...

... . . . . . . . . . 0
...

. . .
...

... . . . . . . . . .
...

0 . . . 1 . . . . . . . . . . . . 0




















, (15)
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Figure 5: An example of integer delay estimation τ̂i using power matrix P as in (17) where
p1 and p3 are the two diagonals, for which (19) is fulfilled.

with P0 = MIM . In this simplified case, the matrix Z is written as

Z =
√

PTM
√
M

R∑

r=1

αr



ekr+1e
T
kr+1

M∑

j=1

eje
T
j+ir



+NCH(0)

=
√

PTM
√
M

R∑

r=1

αrSr +NCH(0). (16)

where Sr is a matrix, where only the entry in the (kr +1) row and mod (kr +
ir + 1,M) column is equal to one, while all the other entries are zero. The
integers kr and ir identify the AoD and τ of the rth multipath component.
Finally, we compute the post correlation power matrix for the general form as

P = E [Z⊙ Z∗] = PTM
3

R∑

r=1

|αr|2Sr ⊙ S∗
r + σ2

nM1M . (17)

The post correlation receive signal to noise ratio (SNR) is enhanced by a process
gain M from correlation and by an antenna gain of M from the array, which is
valid for our simplistic assumption, that both µr and τr are on the grid of the
beamforming vectors as well as of the symbol timing. In any realistic scenario,
this will not be true and the matrices Sr will not be strictly sparse with only
one non-zero entry. But the power matrix, which is available at the user, will
still provide useful information about the model order, i.e. the number of the
paths/wavefronts and the parameters

√
PTαr, µr, τr of each path. We exploit

the power matrix by searching the (wrap-around) diagonals pi, i = 1, . . . ,M of
P for the largest entry as shown in Figure 5 for M = 4.
We have

pT
i =

[
p1,i , p2,mod(i,M)+1, . . . , pM,mod(i+M−2,M)+1

]T ∈ R
M , (18)

where i = 1, . . . ,M , with p1 being the main diagonal of P. For every diagonal
pi we check, whether the largest element is above a certain threshold G,

max
k=1,...,M

(
pk,mod(i+(k−2),M)+1

)
≥ G, i = 1, . . . ,M. (19)
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Figure 6: An example of AoD estimation using a DFT matrix based beamforming via
PREIDG.

G should make sure that we have a signal above the noise floor, which is σ2
nM

(17). The integer delay τir for each path r can be found as shown in Figure 5,

τ̂ir = ir − 1. (20)

For the main diagonal p1, this will always be fulfilled assuming a LOS path,
which has relative delay τi = i1−1

∣
∣
i1=1

= 0. The number of diagonals pi, which

fulfill (19) is the model order R̂ and we have a coarse estimate τ̂ir for each path,
where we drop index r for simplicity.
Since the real spatial frequency of each detected path will be somewhat in
between two spatial frequencies Φk < µr < Φk+1 as in Figure 6, there will be
two significant adjacent entries along the diagonal, which we denote Pk and
Pk+1.
LUT: We get an estimate of µr, by interpolation with K+1 spatial frequencies
µl, generated as follows

µl = Φk + l∆µ, l = 0 . . . ,K, (21)

∆µ =
Φk+1 − Φk

K
=

2π

MK
, (22)

and compute the hypothetical noise free normalized power for those angles, µl

Pk,l =
∣
∣aH(µl)w(Φk)

∣
∣
2
, (23)

Pk+1,l = |aH(µl)w(Φk+1)|2, (24)

with ratios

∆l =

√

Pk,l

Pk+1,l
. (25)
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Since Pk,l and Pk+1,l are independent of k, we need only K+1 ratios to provide
∆l in a LUT. Note that the proposed LUT is different from the idea discussed
in [33], which is based on a re-weighted l -1 minimization problem. The entries
of the measurement matrix are independent and identically distributed (i.i.d)
Gaussian random variables, and besides the observed data is contaminated by
noise. This approach is significantly different from what we have considered in
the generation of the fixed LUT.
Coarse estimation of µ̂r: Now we are selecting those indices l and l + 1,
where the corresponding ratios ∆l and ∆l+1 are closest to the ratio (26)

∆ =

√

Pk

Pk+1
, (26)

and get the estimated spatial frequencies

µ̂r = µl + b∆µ = Φk +∆µ(l + b), (27)

with

b =
∆l −∆

∆l −∆l+1
. (28)

Finally, (27) can be converted to an estimated azimuth angle in degrees

θ̂r =

{

arcsin( µ̂r

π
), 0 ≤ µ̂r ≤ π,

arcsin( µ̂r−2π
π

), π < µ̂r ≤ 2π.
(29)

The interpolation between Φk and Φk+1 can go wrong in some cases especially
if the signal level is weak and µr is close to letting say Φk. In such a case Pk

may be quite large, but Pk+1 may be close to the noise floor. Therefore it is not
clear whether Pk+1 or rather Pk−1 is the second largest power from the signal,
which is masked by the noise. Therefore we check whether

|Pk+1 − Pk−1| ≤
σ2
n

v
. (30)

If (30) is fulfilled, then it is not worthwhile to interpolate at all, but simply
choose µ̂r = Φk. The value of v = 3, has been heuristically chosen based on
numerical experiments. Keep in mind, that the LUT once generated is fixed for
every spatial frequency µr.
After having estimated all AoDs, the model order estimation may be refined,
because of the integer estimation of the delays. One non-integer delay may have
lead to two adjacent integer delays, and both of them will have the same AoD
estimate. If this occurs, we drop one of the two delays.
Now we can put together the whole coarse estimation approach for AoD esti-
mation in Algorithm 1. The only thing the UE has to feedback to the BS is ∆
in (26) which is one real number, and one index with log2 M bits for each path
r. The rest of the computation can be done by BS for each AoD.

11



Algorithm 1 Proposed coarse estimation based on the PREIDG algorithm.

Require: Y (11)
1: The UE received Y and get pi for each path r (17)
2: Calculate ∆ as in (26)
3: Find l such that ∆l ≥ ∆ ≥ ∆l+1

4: Calculate constant b as in (28)

5: return µ̂r and θ̂r as in (27) and (29).

Figure 7: A Flowchart for the two-stage estimation algorithm.

4. Maximum Likelihood Estimation using SAGE

The channel parameters obtained using coarse estimation based on the PREIDG
algorithm can be further improved using an iterative procedure which is initial-
ized by the ad-hoc estimates found by PREIDG. This is a multidimensional,
non-linear optimization problem (36), which can be solved by space-alternating
generalized expectation maximization (SAGE) algorithm. We use the standard
formulation of the SAGE algorithm [19] to solve and derive new expressions for
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our non-linear problem considering important hardware constraints.
To make sure that the SAGE algorithm converges to the global optimum with
low computational complexity. Initializing SAGE with the coarse estimation is
indispensable. Furthermore, SAGE will also help us to estimate the non-integer
delay, unlike the coarse estimation in addition to the more refined complex path
gain for each path r.
We treat the observed data Y as a random variable, parametrized by a Gaussian
probability density function (pdf) with an unknown channel parameter vector
η as

η =
[√

PTRe{α}T,
√

PT Im{α}T,µT, τT
]T

, (31)

where

√

PTRe{α} =
[√

PTRe{α1}, . . . ,
√

PTRe{αr}, . . . ,
√

PTRe{αR}
]T

, (32)

√

PT Im{α} =
[√

PT Im{α1}, . . . ,
√

PT Im{αr}, . . . ,
√

PT Im{αR}
]T

, (33)

µ = [µ1, . . . , µr, . . . , µR]
T , (34)

τ = [τ1, . . . , τr, . . . , τR]
T , (35)

with the likelihood function given as

L(Y;η) =
1

πML detR
exp



−vec

{

Y −
√

PT

R∑

r=1

αrA(µr)C(τr)

}H

R−1 vec

{

Y −
√

PT

R∑

r=1

αrA(µr)C(τr)

})

. (36)

SAGE uses the observable but incomplete data space mentioned in (11) to esti-
mate the parameters of the superimposed R wavefronts.

Y = f(X) = f ([X1, . . . ,XR]) =

R∑

r=1

Xr, (37)

where X is the complete but unobservable data space. Xr is called a hidden
data space.
In each iteration the following expectation and maximization steps are per-
formed. The τ̂i and µ̂r are the ad-hoc estimates obtained using (20) and (27)
which will be used to initialize SAGE, while α̂r = 0 is assumed.
Expectation Step: The conditional expectation of the hidden data space can
be calculated based on the incomplete data space Y and the previous estimation
η̂.

X̂r = EXr
[Xr|Y; η̂] = (1− βr)Sr(η̂r) + βr






Y −

R∑

r′=1
r′ 6=r

Sr′(η̂r′)







, (38)
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where
Sr(ηr) =

√

PTαrA(µr)C(τr), (39)

and
ηr =

[√

PTRe{αr},
√

PT Im{αr}, µr, τr

]

, (40)

and βr controls the convergence rate. Assuming βr = 1 the estimated hidden
data space is estimated as

X̂r = Y −
R∑

r′=1
r′ 6=r

Sr′(η̂r′). (41)

Maximization Step: To compute a refined η̂r, the following optimization
problem has to be solved,

η̂r = argmax
η

r

EXr
[ℓ(Xr;ηr)|Y; η̂] , (42)

where
ℓ(Xr;ηr) = ln (L (Xr ;ηr)), (43)

is the log-likelihood function. This non-linear optimization problem (42) can be
solved iteratively and sequentially. The new derivation of the below equations
are given in Appendix A.
The delay estimation τ̂r can be iteratively maximized as

τ̂r = argmax
τr







∣
∣
∣tr
{

CH(τr)A
H(µ̂r)X̂r

}∣
∣
∣

2

βrσ2
n tr{CH(τr)AH(µ̂r)A(µ̂r)C(τr)}







, (44)

similarly the spatial frequency µ̂r can be iteratively maximized as

µ̂r = argmax
µr







∣
∣
∣tr
{

CH(τ̂r)A
H(µr)X̂r

}∣
∣
∣

2

βrσ2
n tr{CH(τ̂r)AH(µr)A(µr)C(τ̂r)}







, (45)

while in the end ˆ√
PTαr can be analytically found as

ˆ√

PTαr =
tr
{

CH(τ̂r)A
H(µ̂r)X̂r

}

tr{CH(τ̂r)AH(µ̂r)A(µ̂r)C(τ̂r)}
. (46)

One iteration of the SAGE algorithm is defined as a full update of all parameters
of the parameter vector η. To make sure that SAGE converges to the global
optimum, it is important to initialize the SAGE algorithm with a good coarse
estimation. We initialize SAGE with the coarse estimated spatial frequency µ̂r

14



and integer delay τ̂i as shown in Figure 7.
The stopping thresholds for convergence of SAGE are defined as

T1 =
|µ̂rp − µ̂r|

|µ̂r|
, (47)

T2 =
|τ̂rp − τ̂r|

|τ̂r|
, (48)

T3 =
| ˆ√

PTαrp
− ˆ√

PTαr|
| ˆ√

PTαr|
, (49)

where µ̂rp , τ̂rp ,
ˆ√
PTαrp

, are the previous estimates of spatial frequency, delay
time and complex path gain. The stopping criteria for SAGE is satisfied, when
(50) is fulfilled

max {T1,T2,T3} ≤ Γ, (50)

where Γ is the stopping threshold. The coarse parameters are fed to the SAGE
algorithm after refinement of the model order estimation as shown in Figure 7.
All these computations will be done by the UE and for each path r four real

numbers i.e. µ̂r,
ˆ√
PTαr, τ̂r will be quantized and feedback to the BS for further

hybrid beamforming. Of course, the single antenna UE has to have enough
power to feedback this information to the BS. The flowchart for the two-stage
algorithm is shown in Figure 7.

5. Derivation of the CRLB

In this section, we derive the CRLB for spatial frequency (µr), complex path
gain (

√
PTαr) and delay (τr) estimation.

Assuming η̂ as an unbiased estimate of η, then the variance, var of the esti-
mation error for the different parameters can be lower-bounded by the diagonal
elements of the inverse of Fisher information matrix (FIM) represented as F(η)
[34]

var(η̂i) ≥
[
F−1(η)

]

i i
. (51)

The bound on the error is calculated as

√

CRLB(η̂i) =
√

[F−1(η)]i i. (52)

The FIM for complex data is given as [34],

[F(η)]ij =
2

σ2
n

Re

{

tr

{
∂SH(η)

∂ηi

∂S(η)

∂ηj

}}

, (53)

with S(η) is defined as

S(η) =
R∑

r=1

S(ηr) =
√

PT

R∑

r=1

αr A(µr)C(τr). (54)
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The FIM can be structured as

F(η) =






FRe{α}Re{α} FRe{α}Im{α} FRe{α}µ FRe{α}τ
FT

Re{α}Im{α} FIm{α}Im{α} FIm{α}µ FIm{α}τ
FT

Re{α}µ FT
Im{α}µ Fµµ Fµτ

FT
Re{α}τ FT

Im{α}τ FT
µτ Fττ






. (55)

The block matrices of F(η) are derived in Appendix B.

6. Numerical Results

In this section, the performance of the proposed two-stage algorithm is evalu-
ated, assessed with CRLB and compared with ABP. The transmitter is deployed
with a subarray antenna structure with M = 16 and a total number of antennas
N = NRFM as a ULA with λ/2 inter-element spacing.
We assume the bandwidth of a system, B = 200MHz, from which one sym-
bol time can be calculated as Ts = 5ns. The system is operating at a carrier
frequency of fc = 28GHz. 32 pilot symbols are used per beamforming vector
which ends up with a total number of 512 pilot symbols. The distance for LOS
is uniformly distributed as [35]

Dlos ∼ U(30m, 60m), (56)

while the NLOS distances are distributed as

Dnlos = Dlos +∆nlos, (57)

where the ∆nlos is the difference of NLOS and LOS paths and can be distributed
as ∆nlos ∼ U(4.5m, 24m), which gives the delay between 3 and 16 symbols. The
length of CAZAC sequence restricts the maximum delay difference estimated.
The path loss (PL) is calculated as [35]

PL(dB) = 10n̄ log10

(
D

D0

)

, (58)

where n̄ is the path loss exponent which is assumed 2.1 for LOS and 2.4 for
NLOS paths and D0 = 1m. The complex path gain for LOS is assumed such
that α1 = 1. To calculate the complex path gains for NLOS, we need to use the
path loss (58) for LOS (PLlos) and NLOS (PLnlos),

γr =

√

PLlos

PLnlos

, (59)

where γr is the ratio of LOS and NLOS paths and is the magnitude of the
complex path coefficient. The complex path gain, αr for each path r can be
obtained as

αr

α1
= γre

jφr , (60)
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Figure 8: Histogram for the number of iterations of SAGE.

where φr is the phase of the complex coefficient of path r and is uniformly
distributed as φr ∼ U(0, 2π) [35]. α1 is assumed as 1, because what matters is
the ratio of the LOS path as compared to the NLOS path.
The AoD for both LOS path and NLOS paths are generated from a uniform
distribution, i.e. θ◦r ∼ U(−60◦,+60◦) (one sector of a cell) as given in [35]. The
noise variance is kept as σ2

n = 1.
The SNR is defined as

SNR =
PT |α1|2

σ2
n

, (61)

The root mean square error (RMSE) for θr,
√
PTαr and τr are calculated as

RMSE(θ̂r) =

√

E

[

|θr − θ̂r|2
]

, (62)

RMSE(
ˆ√

PTαr) =

√
√
√
√
√E





∣
∣
∣
∣
∣

√
PTαr − ˆ√

PTαr√
PTαr

∣
∣
∣
∣
∣

2


, (63)

RMSE(τ̂r) =
√

E [|τr − τ̂r|2]. (64)

In calculating RMSE, we are not calculating true expected values, but we used
numerical averaging over 10000 realizations.
We are calculating CRLB for all realizations as given in (52) and then obtain
a numerical average over 10000 channel scenarios. Finally, we take the square
root to compare with RMSE respectively. The length of the LUT is chosen as
K = 101.
In the ABP approach, the formation of auxiliary pairs of beams is important
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Figure 9: Performance comparison of two-stage and ABP algorithm for LOS AoD only.

to estimate the corresponding AoD. For this, a specific spacing difference be-
tween the beams named as δ is important and need to be kept constant as in
[20, 23]. The spacing is given as, δ = 2mπ

M
, where m can be chosen from the

set as m = 1, . . . , M
4 . We choose m = 1 and get δ = π

8 . To keep δ = π
8

constant in all the beam pairs of DFT beams, we form 16 beam pairs as
(1, 3), (2, 4), . . . , (15, 1), (16, 2) respectively. The criteria for choosing the auxil-
iary beam pair is the pair which gives the largest average power out of all the
probed beam pairs.
Figure 8 shows the convergence behavior of SAGE. By properly initializing
SAGE with coarse estimation of spatial frequency µ̂r, integer delay τ̂i assuming
τ1 = 0 and α̂r = 0, the maximum number of iterations that SAGE needs to
converge is 4 considering Γ = 10−3. 70% of all channel realizations, SAGE took
3 iterations to converge to the global optimum.
In Figure 9, the two-stage estimation algorithm is evaluated and compared with
ABP for LOS AoD estimation, given the aforementioned scenario. Simulation
results based on 10 thousands of channel realizations show that the proposed
PREIDG method performs better than ABP. After using coarse estimation
based on PREIDG, as an ad-hoc estimation to initialize the SAGE algorithm
gives the improved ML performance which nearly satisfies the theoretical bound.

The AoDs performance of the two-stage method for NLOS paths are compared
with ABP and is assessed with theoretical CRLB in Figure 10. The performance
of PREIDG still performs better than ABP for NLOS paths. The performance
of the ML approach performs better than both PREIDG and ABP method.
The ML method approaches the CRLB closely.
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Figure 10: Performance comparison of two-stage and ABP algorithm for NLOS AoDs only.
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Figure 11: Performance comparison of two-stage and ABP algorithm for αr .

Figure 11 shows the performance comparison of complex path gain, ˆ√
PTαr via

two-stage estimation and ABP method. The performance of the two-stage es-

timation method for ˆ√
PTαr performs better compared to the ABP approach.

For the LOS, the two-stage estimation algorithm achieved CRLB because of
α1 = 1, while for NLOS paths estimates are not good because of the fact that
the model order estimation does not always detect all the NLOS paths.
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Figure 12: Performance comparison of two-stage algorithm for τr .

Finally in Figure 12, the delay time in fractions of symbol period are estimated
for NLOS paths assuming τ1 = 0 for LOS path. The ABP algorithm is unable
to estimate the delay time. The two-stage estimation algorithm performs effi-
ciently and achieves the theoretical bound closely.
Combining both coarse estimation based on PREIDG and using it as an initial
guess for SAGE, enhances the estimation accuracy of θr,

√
PTαr and τr drasti-

cally, especially in the low SNR regime, which is an important design goal for
5G mmWave systems.

7. Conclusion

In this paper, a novel two-stage estimation method is proposed for channel
parameter estimation. The coarse estimation is achieved by the novel proposed
PREIDG method which is based on interpolation with a fixed LUT. In a sec-
ond stage, the SAGE algorithm is applied to refine the estimates of the spatial

frequency µ̂r, obtain the complex path gain ˆ√
PTαr and, the non-integer delay

τ̂r, for every path.
The two-stage estimation method used DFT beams for the estimation of µr,√
PTαr and τr which is efficiently implemented using a Butler matrix in the

analog domain and avoid the use of adaptive phase shifters. The proposed two-
stage method remarkably reduces the implementation complexity in the analog
domain and improves the estimation accuracy and energy efficiency, especially
in the low SNR regime which is interesting for 5G mmWave systems.
We have derived Cramér-Rao lower bound (CRLB) on estimation uncertainty
for the spatial frequencies, complex path gains and the delay time between the
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line of sight and non-line of sight paths.
Through simulations, we analyzed and compared the performance of our pro-
posed algorithm with ABP, which proved that the proposed two-stage estimation
algorithm has lower implementation complexity and efficient estimation perfor-
mance.
Although the method has been described in detail only for single antenna UE’s,
it can be extended to multi-antenna UE’s, two-dimensional arrays at the BS
and usage of orthogonal polarization.

Appendix A. Derivation of ML estimates

The log-likelihood function used in (42) is

ℓ(Xr;ηr) = ln

(
1

(πβrσ2
n)

ML
exp

(−||Xr − Sr(ηr)||2F
βrσ2

n

))

. (A.1)

By taking the expectation with respect to Xr, we get

EXr
[ℓ(Xr;ηr)|Y; η̂] = −ML ln

(
πβrσ

2
n

)
−

1

βrσ2
n

(

tr
{

X̂H
r X̂r

}

− tr
{

SH
r (ηr)X̂r

}

−

tr
{

ST
r (ηr)X̂

∗
r

}

+ ‖Sr(ηr)‖2F
)

. (A.2)

by simplifying (A.2) using the following

‖ST
r (ηr)‖2F = PTαrα

∗
rtr
{
CH(τr)A

H(µr)A(µr)C(τr)
}
, (A.3)

by putting (A.3) into (A.2) can lead us to the following concentrated cost func-
tion

η̂r = argmax
η

r

Λr(ηr), (A.4)

where the concentrated Λr(ηr) is represented as

Λr(ηr) =
(√

PTα
∗
rtr
{

CH(τr)A
H(µr)X̂r

}

+

√

PTαtr
{

CT(τr)A
T(µr)X̂

∗
r

}

−
√

PTαrα
∗
rtr
{
CH(τr)A

H(µr)A(µr)C(τr)
})

. (A.5)

Taking the derivative of Λr(ηr) with respect to
√
PTα

∗
r and setting

∂Λr(ηr
)

∂
√
PTα∗

r

= 0,

leads to

ˆ√

PTαr =
tr
{

CH(τ̂r)A
H(µ̂r)X̂r

}

tr{CH(τ̂r)AH(µ̂r)A(µ̂r)C(τ̂r)}
, (A.6)
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and finally to

(τ̂r, µ̂r) = argmax
τr,µr







∣
∣
∣tr
{

CH(τr)A
H(µr)X̂r

}∣
∣
∣

2

βrσ2
n tr{CH(τr)AH(µr)A(µr)C(τr)}







. (A.7)

which is used to iteratively and sequentially solve for τ̂r and µ̂r in (44) and (45).

Appendix B. Entries of the FIM F(η)

The entries of the block matrices of the FIM (55) are derived as

[FRe{α}Re{α}]ij =
PT

σ2
n

2Re

(

tr

{
R∑

r=1

∂α∗
r

∂Re{αi}
CH(τr)A

H(µr)

R∑

r=1

∂αr

∂Re{αj}
A(µr)C(τr)

})

, (B.1)

[FRe{α}Im{α}]ij =
PT

σ2
n

2Re

(

tr

{
R∑

r=1

∂α∗
r

∂Re{αi}
CH(τr)A

H(µr)

R∑

r=1

∂αr

∂Im{αj}
A(µr)C(τr)

})

, (B.2)

[FRe{α}µ]ij =
PT

σ2
n

2Re

(

tr

{
R∑

r=1

∂α∗
r

∂Re{αi}
CH(τr)A

H(µr)

R∑

r=1

αr

∂A(µr)

∂µj

C(τr)

})

, (B.3)

[FRe{α}τ ]ij =
PT

σ2
n

2Re

(

tr

{
R∑

r=1

∂α∗
r

∂Re{αi}
CH(τr)A

H(µr)

R∑

r=1

αrA(µr)
∂C(τr)

∂τj

})

, (B.4)

[FIm{α}Im{α}]ij =
PT

σ2
n

2Re

(

tr

{
R∑

r=1

∂α∗
r

∂Im{αi}
CH(τr)A

H(µr)

R∑

r=1

∂αr

∂Im{αj}
A(µr)C(τr)

})

, (B.5)
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[FIm{α}µ]ij =
PT

σ2
n

2Re

(

tr

{
R∑

r=1

∂α∗
r

∂Im{αi}
CH(τr)A

H(µr)

R∑

r=1

αr

∂A(µr)

∂µj

C(τr)

})

, (B.6)

[FIm{α}τ ]ij =
PT

σ2
n

2Re

(

tr

{
R∑

r=1

∂α∗
r

∂Im{αi}
CH(τr)A

H(µr)

R∑

r=1

αrA(µr)
∂C(τr)

∂τj

})

, (B.7)

[Fµµ]ij =
PT

σ2
n

2Re

(

tr

{
R∑

r=1

α∗
rC

H(τr)
∂AH(µr)

∂µi

R∑

r=1

αr

A(µr)

∂µj

C(τr)

})

, (B.8)

[Fµτ ]ij =
PT

σ2
n

2Re

(

tr

{
R∑

r=1

α∗
rC

H(τr)
∂AH(µr)

∂µi

R∑

r=1

αrA(µr)
∂C(τr)

∂τj

})

, (B.9)

[Fττ ]ij =
PT

σ2
n

2Re

(

tr

{
R∑

r=1

α∗
r

∂CH(τr)

∂τi
AH(µr)

R∑

r=1

αrA(µr)
∂C(τr)

∂τj

})

. (B.10)

The partial derivative of αr and α∗
r is calculated as

∂αr

∂Re{αi}
=

∂α∗
r

∂Re{αi}
=

{

1 if (r = i)

0 if (r 6= i),
(B.11)

∂αr

∂Im{αi}
= − ∂α∗

r

∂Im{αi}
=

{

j if (r = i)

0 if (r 6= i).
(B.12)

The partial derivative of A(µr) is calculated as

∂A(µr)

∂µr

= diag{a′H(µr)w(Φk)}M−1
k=0 , (B.13)
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with

a′(µr) =
[

0, (−j)e−jµr , . . . , (−j(M − 1))e−j(M−1)µr

]T

. (B.14)

The partial derivative of the sequence c(t) with respect to τr is calculated as

c(t) =

+∞∑

n=−∞
c(n)h(t− nTs), (B.15)

where h(t) is the raised cosine (RC) pulse

h(t) =
sin (π t

Ts
)

π t
Ts

cos (ρπ t
Ts
)

1− (2ρ t
Ts
)2
, (B.16)

where ρ ∈ [0, 1], represents the roll-off factor. The delayed sequence by τr is
represented as

c(t− τr) =

+∞∑

n=−∞
c(n)h(t− nTs − τr). (B.17)

The partial derivative with respect to τr can be written as

∂c(t− τr)

∂τr
=

+∞∑

n=−∞
c(n)

∂h(t− nTs − τr)

∂τr

= −
+∞∑

n=−∞

(

c(n)
∂h(t̃)

∂t̃

∣
∣
∣
∣
∣
t̃=t−nTs−τr

)

. (B.18)
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