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Channel Estimation for Intelligent Reflecting Surface
Assisted MIMO Systems: A Tensor
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Abstract—Intelligent reflecting surface (IRS) is an emerging
technology for future wireless communications including 5G and
especially 6 G. It consists of a large 2D array of (semi-)passive
scattering elements that control the electromagnetic properties of
radio-frequency waves so that the reflected signals add coherently
at the intended receiver or destructively to reduce co-channel
interference. The promised gains of IRS-assisted communications
depend on the accuracy of the channel state information. In this
paper, we address the receiver design for an IRS-assisted multiple-
input multiple-output (MIMO) communication system via a tensor
modeling approach aiming at the channel estimation problem us-
ing supervised (pilot-assisted) methods. Considering a structured
time-domain pattern of pilots and IRS phase shifts, we present
two channel estimation methods that rely on a parallel factor
(PARAFAC) tensor modeling of the received signals. The first one
has a closed-form solution based on a Khatri-Rao factorization of
the cascaded MIMO channel, by solving rank-1 matrix approxi-
mation problems, while the second on is an iterative alternating
estimation scheme. The common feature of both methods is the
decoupling of the estimates of the involved MIMO channel matrices
(base station-IRS and IRS-user terminal), which provides perfor-
mance enhancements in comparison to competing methods that
are based on unstructured LS estimates of the cascaded channel.
Design recommendations for both methods that guide the choice
of the system parameters are discussed. Numerical results show
the effectiveness of the proposed receivers, highlight the involved
trade-offs, and corroborate their superior performance compared
to competing LS-based solutions.

Index Terms—Channel estimation, intelligent reflecting surface,
khatri-rao factorization, MIMO, PARAFAC, tensor modeling.
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I. INTRODUCTION

IN A TYPICAL wireless propagation environment, the trans-
mitted signals suffer attenuation and scattering caused by

absorption and reflection, diffraction, and refraction phenomena.
In general, multipath propagation is known as one of the main
limiting factors to the performance of a wireless communica-
tion system [1]. Indeed, the randomness of the physical radio
environment turns the wireless propagation uncontrollable.

Intelligent reflecting surface (IRS) (also referred to as re-
configurable intelligent surface or software-controlled metasur-
face) [2]–[7] is an emergent and promising technology for future
(beyond 5G) wireless communications. It consists of a 2D array
with a large number of passive or semi-passive elements that can
control the electromagnetic properties of the radio-frequency
waves so that the reflected signals add coherently at the intended
receiver or destructively to reduce the co-channel interference.
Each element can act independently and can be reconfigured in
a software-defined manner by means of an external controller.
The IRS does not require dedicated radio-frequency chains and
is usually wirelessly powered by an external RF-based source, as
opposed to amplify-and-forward or decode-and-forward relays,
which require dedicated power sources [6]. In the literature,
IRS is being considered in a number of application scenar-
ios, such as to provide coverage to users located in a dead
zone and to suppress co-channel interference when the user is
in the edge of the cell [8], [9], and to improve the physical
layer security [10], [11]. Besides, the IRS can be employed
for simultaneous wireless information and power transfer in an
IoT network [8]. Regarding wireless communication systems,
recently, [12] established a connection between IRS technology
and a millimeter wave (mmWave) hybrid MIMO systems. In
this case, the authors consider a hybrid MIMO-OFDM assisted
by IRS working in the mmWave band.

Recent works have discussed the potentials and challenges
of IRS-assisted wireless communications (see, e.g., [2], [3] and
references therein). Among the several open issues, we highlight
the acquisition of channel state information. One challenge is
related to the assumption that the IRS usually consists of passive
elements, which means that the estimation of the cascaded
channel should be performed at the receiver based on pilots
sent by the transmitter via the IRS. At this point, the pattern
of phase shifts used by the IRS during the training phase plays
an important role. In addition, the large number of IRS elements
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imposes an extra challenge to the address the channel estimation
problem. Two approaches have been proposed in the literature.
The first one assumes a semi-passive structure, where the IRS
has a few active elements connected to receive radio-frequency
chains. In this case, the availability of some baseband processing
at the IRS facilitates the CSI acquisition. An example of this
approach is discussed in [13], where the involved channels
are estimated by means of compressive sensing. The second
approach, which is the one adopted in this paper, assumes a
fully passive structure, where the IRS operates by reflecting the
impinging waves according to some phase-shift pattern. This is a
more challenging scenario, where the estimation of the cascaded
(transmitter-IRS-receiver) should be done at the receiver based
on pilots sent by the transmitter and reflected by the IRS.

A few works have addressed the channel estimation problem
and provided different solutions to the passive IRS case. In [14],
a minimum variance unbiased estimator is proposed, and an op-
timal design of the IRS phase shift matrix is found. The authors
of [15] propose a two-stage algorithm by exploiting sparse repre-
sentations of low-rank multipath channels. In [16], links between
massive MIMO and IRS are discussed in the context of Terahertz
communications, and a cooperative channel estimation via beam
training is presented. In [17], IRS is proposed as a solution
to mitigate the blockage problem in mmWave communications
and a channel estimation approach is presented. The work [18]
proposes an uplink channel estimation protocol for an IRS aided
multi-user MIMO system applying compressing sensing (CS)
methods. In [19], an IRS-aided MIMO system is considered, and
channel estimation is carried out in a two-stage approach, and
the IRS-assisted link is estimated by means of an approximate
message-passing method. Considering an IRS-assisted internet
of things scenario, [20] formulates a joint active detection and
channel estimation based on sparse matrix factorization, matrix
completion, and multiple measurement vector problems.

The authors of [21] propose a channel estimation framework
where the BS-IRS, IRS-UT, and BS-UT channels are estimated
in a two-timescale approach, while in [22] a practical transmis-
sion protocol is proposed to accomplish channel estimation and
passive beamforming. In [23], channel estimation is carried out
by resorting to an on-off strategy that sequentially activates the
IRS elements one-by-one. The work [24] proposes a parallel
factor model to solve the channel estimation problem in a multi-
user MISO setting. In general, most of the existing works on
IRS-assisted communications consider the multiple input single
output (MISO) case, where the receiver station is equipped with
a single antenna.

In the last decade, tensor modeling has been successfully
applied in a variety of signal processing problems [25]–[30], in
particular in the context of wireless communications, involving
the design of semi-blind receivers for MIMO systems [31],
[32], channel estimation methods for cooperative communica-
tions [33], [34], direction of arrival estimation and beamforming
in array processing [35]–[37], and, more recently, compressed
channel estimation in massive MIMO systems [38], [39]. As
discussed in most of these works, tensor-based signal process-
ing benefits from the powerful uniqueness properties of tensor
decompositions while exploiting the multi-dimensional nature

of the transmitted/received signals and communication chan-
nels. In this work, we establish an existing connection between
IRS-assisted MIMO communications and tensor modeling. By
assuming a structured time-domain pattern of pilots and IRS
phase shifts, we show that the received signal follows a parallel
factor (PARAFAC) tensor model. By exploiting the PARAFAC
signal structure in two different ways, we propose two simple
and effective algorithms to estimate the cascaded MIMO channel
via decoupling the transmitter-IRS and IRS-receiver MIMO
channels, respectively. The first algorithm is a closed-form
solution based on the Khatri-Rao factorization (KRF) of the
combined BS-IRS and IRS-UT channels, while the second one
consists of an iterative bilinear alternating least squares (BALS)
algorithm. While the first algorithm is a closed-form algebraic
and less complex solution, the second one can operate under less
restrictive conditions on the system parameters.

The common feature of the two algorithms is that the esti-
mation of the cascaded channel is achieved via decoupling the
estimation of the two involved channel matrices, which provides
a performance enhancement compared to the direct estimation of
the cascaded channel via conventional least squares. By focusing
on pilot-assisted channel estimation schemes, this work extends
the results of our previous conference paper [40] by presenting a
more comprehensive formulation of tensor-based IRS-assisted
channel estimation methods, while bringing a discussion on
the uniqueness conditions for the channel estimation problem
considering the proposed receivers, from which useful design
recommendations on the training parameters are derived. We
discuss how to deal with a nonideal setup where the IRS phase
shifts are not perfectly known at the receiver, and provide a
solution to handle this problem. In addition, we also present gen-
eralizations of the proposed approach to multi-user scenarios.
Numerical results corroborate the effectiveness of the proposed
channel estimation methods and highlight the involved tradeoffs.

The contributions of this work are summarized as follows.
� Resorting to tensor modeling, we connect the channel

estimation problem for IRS-assisted MIMO systems to that
of fitting PARAFAC model to a third-order tensor;

� We derive two simple pilot-assisted channel estimation
algorithms (namely, KRF and BALS) that exploit the al-
gebraic structure of the PARAFAC model of the received
signals in two different ways;

� We provide system design recommendations for the pro-
posed KRF and BALS receivers that ensure the uniqueness
of the channel estimation problem;

� We discuss how to handle perturbations/fluctuations on the
IRS phase shifts by means of a joint channel and IRS matrix
estimation at the receiver;

� Generalizations of the proposed tensor signal model to
multi-user scenarios is provided, which include the multi-
UT and the multi-BS cases;

� A detailed derivation of the analytical expressions of the
CRB is provided.

Notation and properties: Matrices are represented with bold-
face capital letters (A,B, . . . ), and vectors are denoted by
boldface lowercase letters (a,b, . . . ). Tensors are symbolized by
calligraphic letters (A,B, . . . ). Transpose and pseudo-inverse of
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Fig. 1. IRS-assisted MIMO system.

a matrixA are denoted asAT andA†, respectively. The operator
diag(a) forms a diagonal matrix out of its vector argument,
while ∗, ◦, �, � and ⊗ denote the conjugate, outer product,
Khatri Rao, Hadamard and Kronecker products, respectively.
IN denotes the N ×N identity matrix. The operator vec(·)
vectorizes an I × J matrix argument, while unvecI×J(·) does
the opposite operation. Moreover, vecd(·) forms a vector out
of the diagonal of its matrix argument. The n-mode product
between a tensor Y ∈ CI×J...K and a matrix A ∈ CI×R is
denoted as X ×n A, for 1 ≤ n ≤ N . An identity N -way tensor
of dimension R×R · · · ×R is denoted as IN,R. The operator
Di(A) forms a diagonal matrix from the i-th row of its matrix
argument A. Moreover, Ai. denotes the ith row of the matrixA.
The operator 	x
 rounds its fractional argument up to the nearest
integer. In this paper, we make use of the following identities:

(A⊗B)(C �D) = (AC) � (BD). (1)

(A �B)H(C �D) = (AHC)� (BHD). (2)

vec(ABC) = (CT ⊗A)vec(B). (3)

diag(a)b = diag(b)a. (4)

If B is a diagonal matrix, we have:

vec(ABC) = (CT �A)vecd(B). (5)

II. SYSTEM MODEL

We consider a MIMO communication system assisted by an
IRS. Both the transmitter and the receiver are equipped with
multiple antennas. Although the terminology adopted in this pa-
per assumes a downlink communication, where the transmitter
is the base station (BS) and the receiver is the user terminal (UT),
our signal model also applies to the uplink case by just inverting
the roles of the transmitter and the receiver. The BS and UT are
equipped with arrays ofM andL antennas, respectively. The IRS
is composed ofN elements, or unit cells, capable of individually
adjusting their reflection coefficients (i.e., phase shifts). The sys-
tem model is illustrated in Fig. 1. In a time-slotted transmission,
we assume that the IRS adjusts its phase-shifts as a function of
the time t = 1, . . . , T . We also assume a block-fading channel,
which means that the BS-IRS and IRS-UT channels are constant

Fig. 2. Structured pilot pattern in the time domain.

during T time slots. The received signal is given as [15]

y[t] = G(s[t]�Hx[t]) + b[t], 1 ≤ t ≤ T, (6)

or, alternatively,

y[t] = Gdiag(s[t])Hx[t] + b[t], (7)

wherex[t] ∈ CM×1 is the vector containing the transmitted pilot
signals at time t, s[t] = [s1,te

jφ1 , . . . , sN,te
jφN ]T ∈ CN×1 is

the vector that models the phase shifts and activation pattern
of the IRS, where φn ∈ (0, 2π], and sn,t ∈ {0, 1} controls the
on-off state of the corresponding element at time t. The matrices
H ∈ CN×M and G ∈ CL×N denote the BS-IRS and IRS-UT
MIMO channels, respectively, whileb[t] ∈ CL×1 is the additive
white Gaussian noise (AWGN) vector.

The channel training time Ts is divided into K blocks, where
each block has T time slots so that Ts = KT . Let us define
y[k, t]

.
= y[(k − 1)T + t] as the received signal at the t-th time

slot of the k-th block, t = 1, . . . , T , k = 1, . . . ,K. Likewise,
denote x[k, t] and s[k, t] as the pilot signal and phase shift
vectors associated with the t-th time slot of the k-th block. We
propose the following structured time-domain protocol: i) the
IRS phase shift vector is constant during the T time slots of the
k-th block and varies from block to block; ii) the pilot signals
{x[1], . . . ,x[T ]} are repeated over the K blocks. Mathemati-
cally, this means that

s[k, t] = s[k], for 1 ≤ t ≤ T, (8)

x[k, t] = x[t], for 1 ≤ k ≤ K. (9)

An illustration of this time-domain protocol is shown in Fig. 2.
Under these assumptions, the received signal model (7) can be
written as

y[k, t] = Gdiag(s[k])Hx[t] + b[k, t]. (10)

Collecting the received signals duringT time slots for the k-th
block in Y[k] = [y[k, 1] . . .y[k, T ]] ∈ CL×T leads to

Y[k] = Gdiag(s[k])HXT +B[k], (11)

where X
.
= [x[1], . . . ,x[T ]]T ∈ CT×M , and B

.
= [b[1], . . . ,

b[T ]]T ∈ CL×T .

A. Least Squares Channel Estimation

A baseline method consists of estimating a combined version
of the communication channels G and H using least squares
(LS) approach. To derive the LS estimator, we apply property
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(5) to (11) to obtain

y[k] =
(
XHT �G)

sk

= (X⊗ IL)
(
HT �G)

s[k] + b[k], (12)

where y[k]
.
= vec(Y[k]) ∈ CLT , b[k]

.
= vec(B[k]) ∈ CLT ,

and we have used property (1). Defining Ỹ
.
= [y[1] . . .y[K]] ∈

CLT×K , and X̃
.
= (X⊗ IL) ∈ CTL×ML, we have

Ỹ = X̃
(
HT �G)

ST +B, (13)

where S
.
= [s[1], . . . , s[K]]T ∈ CK×N , B ∈ CLT×K is the

noise matrix constructed in the same way as Y. Finally, defining
y

.
= vec(Ỹ) ∈ CLTK , and applying property (3) to (13), we get

y = (S⊗ X̃)vec
(
HT �G)

+ b, (14)

or, compactly,

y = Uθ + b, (15)

where U
.
= S⊗ X̃ ∈ CKTL×NML and θ

.
= vec(HT �G) ∈

CMLN is the composite channel parameter combining the BS-
IRS and IRS-UT channels. The LS estimate of this composite
channel minimizes the problem

θ̂ = argmin
θ

‖y −Uθ‖2 , (16)

the solution of which is known to be θ = U†y. The computation
of this solution can indeed be simplified toθ = (S† ⊗ X̃†)y, due
to the Kronecker structure of U.

It should be noted that the conventional LS problem ignores
the Katri-Rao structure of the composite channel that is present
in the linearized parameter vector θ. Indeed, the signal model
(11), or equivalently, (13) has a tensor structure, and can be
recast as a PARAFAC tensor model. As we show in Section III,
adopting this tensor modeling allows us to enhance the channel
estimation accuracy (compared to conventional LS methods).
This is achieved by decoupling the estimates of H and G,
rather them estimating θ = vec(HT �G) as a whole. Moreover,
useful system design recommendations can be derived from the
proposed modeling approach.

B. Tensor Signal Modeling

In order to simplify the exposition of the signal model, we
remove the noise term from the following developments. The
noise term will be taken into account later. We can rewrite the
signal part of equation (11) as

Y[k] = GDk(S)Z
T, Z

.
= XHT ∈ CT×N , (17)

where Dk(S)
.
= diag(s[k]) denotes a diagonal matrix holding

the k-th row of the IRS phase shift matrix S on its main
diagonal. The matrix Y[k] can be viewed as the k-th frontal
matrix slice of a three-way tensor Y ∈ CL×T×K that follows
a PARAFAC decomposition, also known as canonical polyadic
decomposition (CPD) [26], [41]–[44]). Each (�, t, k)-th entry of
the noiseless received signal tensor Y can be written as:

y�,t,k =

N∑
n=1

g�,nzt,nsk,n, (18)

where g�,n
.
= [G]�,n, zt,n

.
= [Z]t,n, and sk,n

.
= [S]k,n. A short-

hand notation for the PARAFAC decomposition (18) is denoted
as Y = [[G,Z,S]]. Using the n-mode product notation, the
PARAFAC decomposition of the noiseless received signal tensor
Y can be represented as

Y = I3,N ×1 G×2 Z×3 S. (19)

Exploiting the trilinearity of the PARAFAC decomposition, we
can “unfold” received signal tensor Y into the following three
matrix forms [41], [42]:

Y1 = G(S � Z)T ∈ CL×TK , (20)

Y2 = Z(S �G)T ∈ CT×LK , (21)

Y3 = S(Z �G)T ∈ CK×LT , (22)

where Y1
.
= [Y[1], . . . ,Y[K]], Y2

.
= [Y

T
[1], . . . ,Y

T
[K]],

and Y3
.
= [vec(Y[1]), . . . , vec(Y[K])]T. In the following, the

algebraic structure of the PARAFAC model (18) is exploited
to formulate two channel estimation methods. The PARAFAC
model is powerful due to its essential factor identification
uniqueness property, which has its roots on the concept of
Kruskal rank (k-rank). Details can be found in [45], [46].

III. CHANNEL ESTIMATION METHODS

Our goal is to estimate the channel matrices H (BS-IRS) and
G (IRS-UT) from the received signal tensor given in (18). Let us
defineY .

= Y + B as the noise-corrupted received signal tensor,
where B ∈ CL×T×K is the additive noise tensor. Likewise,
Yi

.
= Yi +Bi, i = 1, 2, 3, are the noisy versions of the 1-mode,

2-mode and 3-mode matrix unfoldings (20)-(22) of the received
signal tensor, and Bi=1,2,3 the corresponding matrix unfoldings
of the noise tensor.

The pilot signal matrix X and the IRS phase shifts matrix
S can be designed as semi-unitary matrices satisfying XHX =
T IM and SHS = KIN , respectively. A good choice is to design
both X and S as truncated discrete Fourier transform (DFT)
matrices. The optimal design of the IRS matrix S is discussed
in [14] for the multiple-input single-output (MISO) case (i.e, for
single-antenna users).

A. Khatri-Rao Factorization Based Channel Estimation

First, note that we can rewrite the noise-corrupted matrix
unfolding (22) as:

Y3 = S(Z �G)T +B3

= S
(
HT �G)T

(X⊗ IL)
T +B3, (23)

where we have applied the property (A⊗B)(C �D) =
(AC) � (BD) to the term (Z �G) = (XHT �G). A bilinear
time-domain filtering is applied at the receiver by exploiting
the knowledge of the IRS matrix and the pilot signal matrix, as
follows

Ω
.
= (X† ⊗ IL)Y

T
3(S

T)† = HT �G+ B̃3, (24)
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where B̃3 = (X† ⊗ IL)B
T
3(S

T)† is the filtered noise term. Note
that Ω ∈ CML×N is a noisy version of the (Khatri-Rao struc-
tured) virtual MIMO channel that models the IRS-assisted
MIMO transmission. Due to the semi-unitary structure of S and
X, the correlation properties of the additive noise are not affected
by the bilinear filtering step.

From (24), we propose to estimate H and G by solving the
following Khatri-Rao least squares approximation problem

min
H,G

∥∥Ω−HT �G∥∥2
F
. (25)

An efficient solution to this problem is given by the Khatri-Rao
factorization (KRF) algorithm [47], [48]. Note that the problem
(25) can be interpreted as finding estimates of H and G that
minimize a set of rank-1 matrix approximations, i.e.,

(Ĥ, Ĝ) = argmin
{hn},{gn}

N∑
n=1

∥∥∥Ω̃n − gnh
T
n

∥∥∥2
F
, (26)

where Ω̃n
.
= unvecL×M (ωn) ∈ CL×M , while gn ∈ CL×1 and

hT
n ∈ C1×M are the n-th column of G and n-th row of H,

respectively. The estimates of gn and hn in (26) can be ob-
tained from the dominant left and right singular vectors of Ω̃n,
respectively, for 1 ≤ n ≤ N . Hence, our channel estimation
problem translates into solving N rank-1 matrix approximation
subproblems, for which several efficient solutions exist in the
literature [49]. A summary of the KRF algorithm is given in
Algorithm 1, where t-SVD denotes a truncated SVD (t-SVD
denotes also tensor SVD in the tensor literature) that returns
the dominant singular vector and its associated singular value.
Once Ĥ and Ĝ are found from problem (26), we can build the
composite channel.

B. BALS Channel Estimation

From the noisy versions of the matrix unfoldings (20) and
(21), we can derive an iterative solution based on a bilinear
alternating least squares (BALS) algorithm. This algorithm is a
simplified version of the well-known trilinear ALS algorithm for

estimating the factor matrices of a PARAFAC model [50]. In our
case, sinceS is known at the receiver, it consists of estimating the
matricesG andH in an alternating way by iteratively optimizing
the following two cost functions:

Ĝ = argmin
G

∥∥Y1 −G(S �XHT)T
∥∥2
F
, (27)

Ĥ = argmin
H

∥∥Y2 −XHT(S �G)T
∥∥2
F
, (28)

the solutions of which are respectively given by

Ĝ = Y1

[(
S �XHT

)T
]†
, (29)

ĤT = X†Y2

[
(S �G)T

]†
. (30)

The convergence is declared when ‖e(i) − e(i−1)‖ ≤ δ, where

e(i) = ‖Y − Ŷ(i)‖2F denotes the reconstruction error computed

at the i-th iteration, δ is a threshold parameter, and Ŷ(i) =

[Ĝ(i),XĤT
(i), Ŝ] is the reconstructed PARAFAC model (c.f.

(11), (18)) obtained from the estimated channel matrices Ĝ(i)

and Ĥ(i) at the end of the i-th iteration. In this work, we adopt
ε = 10−5. Despite the iterative nature of the BALS algorithm,
only a few iterations are necessary for convergence (usually less
than 10 iterations) thanks to the knowledge of the IRS matrix S
that remains fixed during the iterations.

If X and S are column-orthogonal (which requires K ≥ N
and T ≥ M ), the right pseudo-inverses in (29) and (30) can be
replaced by matrix products. This leads to a lower complexity
implementation of the BALS algorithm with simplified estima-
tion steps, as shown in Appendix B.

C. Computational Complexity

The computational complexity is in general dominated by
the (truncated) SVD steps involved in Algorithm 1 (KRF) to
compute rank-1 matrix approximations, as well as in Algorithm
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2 (BALS) to calculate the LS estimates of the channel matrices.
First, recall that computing the SVD of a matrix P ×Q has a
complexity order of O(PQmin(P,Q)), while computing the
inner product of two matrices of dimensions P × F and F ×Q
has complexity O(PQF ). The complexity of KRF is that of
computing N rank-1 approximation routines from the matrix
Ω̃n, n = 1, . . . , N , which can be efficiently implemented by
means of the well-known power method [49]. From these results,
we find that the KRF algorithm has a complexity of order
O(MLN) owing to the N rank-1 matrix approximations. As
for the iterative BALS receiver, as discussed in Section III-B,
the computational cost associated with steps 1 and 2 is that
of computing two right pseudo-inverses per iteration, which is
equivalent to O(NKT [2N + L]) and O(MT [2M + LK] +
N2[LK +M ] +MNLK), respectively. Note, however, that
this computational cost is greatly reduced when S and X have
orthogonal columns (which requireK ≥ N andT ≥ M , respec-
tively). According to the steps derived in Appendix B, the cost
per iteration is that of computing the matrix products in steps 1
and 2 of Algorithm 3, which corresponds to O(LN [TK +N ])
and O(M [LKT + LKN +N2]), respectively.

D. Dealing With IRS Perturbations and Blockages

In outdoor scenarios, due to the exposure of the IRS to
weather and atmospheric conditions, its elements may be subject
to unknown blockages, as well as time-dependent fluctuations
on their phase and amplitude responses [51]. Such unknown
perturbations have a random nature, and may be caused by
water droplets, snowflakes, dry and damp sand particles, among
others. In this case, the IRS matrix S deviates from its desired
structure, and the assumption of a perfect knowledge of all the
phase shifts at the receiver may not hold. Otherwise stated, the
receiver cannot benefit from the full knowledge of the IRS phase
shifts to estimate the cascade channel, i.e., it should be able
to operate in a semi-blind way. Adopting our tensor modeling
approach, it is possible to deal with this issue by resorting to a
trilinear alternating least squares (TALS) algorithm that jointly
estimates G, H, and S by fully exploiting the trilinear structure
of the received signal tensor in (18)-(19). The TALS algorithm
is an extension of the BALS one by adding in Algorithm 2 a
third estimation step

Ŝ(i) = Y3

[(
XĤT

(i) � Ĝ(i)

)T
]†

that includes the update/refinement the IRS matrix within the
loop. The TALS arises as a good alternative to deal with IRS
phase shift perturbations. Since the channel matrices are now
estimated in a blind way, i.e., without the knowledge of the IRS
matrix S, more iterations are required to achieve convergence.
Moreover, the complexity is also increased due to the additional
LS estimation step at each iteration. TALS is a well-known
algorithm for fitting a PARAFAC model [42], [43], [50]. In
such a blind approach, we can resort to the Kruskal’s unique-
ness conditions for the PARAFAC model [45] to obtain useful
system design recommendations. A simplified condition can be

obtained when the channel matrices have full rank.1 In this case,
min(L,N) + min(M,N) + min(K,N) ≥ 2N + 2 guarantees
the uniqueness of G, H and S (see [26], [46] for a deeper
uniqueness discussion in the general case). It is known that TALS
may suffer from slow convergence due to its sensitivity to the
initialization. However, several enhancements may be used to
improve its performance (see [43] and references therein).

IV. DESIGN RECOMMENDATIONS

The KRF method (Algorithm 1) has a bilinear filtering step
as shown in (24) requiring that the IRS phase shift matrix S and
the pilot symbol matrix X have full column-rank, which implies
the following conditions

K ≥ N and T ≥ M. (31)

As mentioned earlier, a good choice is to design X and S are
semi-unitary (or column-orthogonal) matrices, for two reasons.
First, because the the semi-unitary design replaces matrix inver-
sions in (24) by simple matrix products, simplifying the receiver
processing. Second, because the correlation properties of the
filtered noise term in (24) are preserved.

The BALS method (Algorithm 2) requires that the two Khatri-
Rao product terms M1 = S �XHT ∈ CKT×N and M2 = S �
G ∈ CKL×N have full column-rank, so that (29) and (30) (resp.
steps 1 and 2 of Algorithm 2) admit unique solutions. This means
that the conditions KT ≥ N and KL ≥ N must be satisfied.
Combining these two inequalities implies min(KT,KL) ≥ N ,
or, equivalently, Kmin(T, L) ≥ N . In addition, the condition
T ≥ M in (28) is required, since X must have full column-
rank to be left-invertible. Hence, the following conditions are
necessary

Kmin(T, L) ≥ N. and T ≥ M (32)

Comparing the conditions (31) and (32), we can note that
BALS has a less restrictive requirement on the minimum number
K of time blocks for the channel training compared to KRF
method. Note that, in the special case L = 1 (MISO or SISO
system), the inequalities (31) and (32) are identical, i.e., BALS
and KRF are subject to the same training requirements. The
advantage of BALS over KRF appears in the MIMO case, since
BALS can operate underK < N , while KRF requiresK ≥ N 2.
On the other hand, KRF usually has a lower computational
complexity than BALS, as will be shown later in the discussion
of our numerical results.

Note that condition (32) is necessary but does not guarantee
the uniqueness of the BALS estimates. Sufficient conditions can
be derived by studying the rank properties ofM1 = S �XHT ∈
CKT×N andM2 = S �G ∈ CKL×N . To this end, let us invoke
the following result.

1The condition min(L,N) + min(M,N) + min(K,N) ≥ 2N + 2 usually
implies more restrictive choices on the system parameters L, M , and K,
compared to the conditions discussed in Section V, which are valid when
considering the perfect knowledge of the IRS matrix.

2Note that ifK = 1, KRF reduces to the conventional LS estimator. However,
in this case we cannot resolve/decouple the estimation of the two channel
matrices, and the performance gain obtained with such a decoupling via solving
problem (25) is lost.
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Lemma 1 (Rank of the Khatri-Rao product [46], [52]): For
A ∈ CI×N and B ∈ CJ×N , if rank(A) ≥ 1 and rank(B) ≥ 1,
then rank(A �B) ≥ min(rank(A) + rank(B)− 1, N). A con-
cise proof of this lemma can be found in [46], [53]. This result
means that the Khatri-Rao product of A and B will have full
column-rank if rank(A) + rank(B) ≥ N + 1.

The application of Lemma 1 to the Khatri-Rao structured
matrices M1 = S �XHT and M2 = S �G leads to the fol-
lowing conditions that guarantee the uniqueness of the channel
estimates via solving the problems (27) and (28)

rank(S) + rank(XHT) ≥ N + 1 (33)

rank(S) + rank(G) ≥ N + 1 (34)

Let us consider that our channel training design parameters,
namely, the IRS phase shift matrix S and the pilot symbols
matrix X are designed to have full rank. The above conditions
yield useful corollaries for the system design, when BALS is
used. In the following, we discuss these corollaries.

A. The BS-IRS and IRS-UT Channel Matrices Have Full Rank

Assuming that both channel matrices H and G have full rank
(e.g. i.i.d. Rayleigh fading), conditions (33)-(34) can be rewritten
as

min(K,N) + min(M,N) ≥ N + 1 (35)

min(K,N) + min(L,N) ≥ N + 1. (36)

We may distinguish two cases, as follows.
� N ≥ T ≥ M and N ≥ L: In this scenario, the BS and the

UT have small to moderate antenna array sizes, whose
number of antennas are smaller than the number of IRS
elements. In this case, conditions (33)-(34) reduce to

M + min(K,N) ≥ N + 1 (37)

L+ min(K,N) ≥ N + 1 (38)

� T ≥ M ≥ N : In this scenario, the BS is assumed to be
equipped with a large antenna array, which has as many
antennas as the number of IRS elements (massive MIMO
setup). Since condition (33) is always satisfied regardless
of the value of K, the uniqueness of the channel estimates
only depends on (34), which translates to

min(K,N) + min(L,N) ≥ N + 1 (39)

The conditions (37) and (38) establish a tradeoff between
the time dimension (number K of IRS training blocks) and
the two spatial dimensions (number M and L of transmit
and receive antennas, respectively) from a channel recovery
viewpoint. For instance, if K < N , these conditions imply
M +K ≥ N + 1 and L+K ≥ N + 1, which is equivalent to
min(M +K,L+K) ≥ N + 1. Hence, reducing the number
of transmit (or receive) antennas should be compensated by an
increase on the number of time blocks in order to ensure the
uniqueness of the channel estimates via the BALS algorithm.

B. The BS-IRS and IRS-UT Channel Matrices are
Rank-Deficient

In millimeter-wave MIMO systems, the large number of
transmit/receive antennas combined with scattering-poor prop-
agation may result in low rank channel matrices H and G. Let
us assume that the signal propagating between the BS and IRS
experiences R1 clusters, while the signal propagating between
the IRS and the UT experiences R2 clusters. Moreover, assume
that each cluster contributes with one ray that has a complex
amplitude and an associated angle of arrival/departure. We can
represent the BS-IRS and IRS-UT channels as follows [54]

H = AIRSdiag(α)AH
BS, (40)

G = BUTdiag(β)BH
IRS, (41)

where ABS ∈ CM×R1 , AIRS ∈ CN×R1 , BUT ∈ CL×R2 and
BIRS ∈ CN×R2 are the array response matrices, and the vectors
α and β hold the complex amplitude coefficients of the BS-IRS
and IRS-UT channels, respectively. More specifically, we have
rank(H) = R1 and rank(G) = R2, where it is assumed that
R1 ≤ min(M,N) and R2 ≤ min(L,N) (rank-deficient case).

First, note that the conditions (31) required by the KRF
algorithm to solve the decoupled channel estimation problem
are not affected by the rank deficiency of the channel matrices.
However, this is not the case for BALS, since the uniqueness
of the LS estimates of G and H depend on the rank of these
matrices, as shown in conditions (33) and (34). Considering
BALS, we can draw useful corollaries as follows.
� T ≥ M : Conditions (33) and (34) reduce to

min(K,N) +R1 ≥ N + 1 (42)

min(K,N) +R2 ≥ N + 1 (43)

It is worth discussing the following cases. If K ≥ N ,
we conclude that these conditions are always satisfied,
irrespective of the ranks of the channel matrices. If K <
N , the these conditions reduce to K +R1 ≥ N + 1 and
K +R2 ≥ N + 1, yielding a useful design recommenda-
tion the number K of blocks that guarantee the uniqueness
of the channel estimates in the rank-deficient case.

� K ≥ N : In this case, conditions (33) and (34) are always
satisfied, irrespective of the rank of G and H.

Discussion: It is worth noting that the proposed channel
estimation methods still work for K = 1. However, in this setup
only the cascaded channel C = Gdiag(s)H can be estimated.
The performance enhancements that come from the decoupling
of the estimates of H and G (via KRF or BALS) cannot be ob-
tained. Otherwise stated, leveraging extra training time diversity
by increasing the number K of IRS phase shift patterns allows
us to extract additional gains in comparison to the traditional LS
estimator, as will be shown in our numerical results. However,
such gains come at the expense of an increase on the training
resources. Therefore, here we clearly see a trade-off between
training overhead and performance.

In addition, it is clear from conditions (33)-(34), or equiva-
lently, from conditions (35) and (35), that BALS can operate
under more flexible choices for K than KRF, since the latter
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always requires K ≥ N . Note that, for M ≥ N and L ≥ N ,
these conditions are satisfied even for small values of K. In
practice, this means that BALS may operate with a much lower
training overhead than KRF and the traditional LS methods.
However, our experience shows that for a large number of IRS
elements, working with small values of K results in a slower
convergence speed of BALS due to the limited time diversity.
Therefore, a trade-off between training overhead and complexity
arises when BALS is considered.

Note also that, in terms of the required training time resources,
BALS becomes equivalent to KRF in the single transmit antenna
case (M = 1) and/or in the single receive antenna case (L = 1).
Otherwise stated, for MISO and/or SIMO IRS-assisted systems,
BALS and KRF have exactly the same requirement K ≥ N .
Thus, we can say that BALS is advantageous over KRF in terms
of training overhead when considering the MIMO case. Like-
wise, performance gains of KRF and BALS over the baseline
LS method also arise in the MIMO setup, where spatial degrees
of freedom at the transmitter and the receiver are efficiently
exploited to obtain more accurate channel estimates. Finally,
one can note that the channel estimates Ĝ and Ĥ are affected by
scaling factors3 satisfying Ĥ = ΔHH and Ĝ = GΔG, where
ΔHΔG = IN . These scaling ambiguities are irrelevant in our
context since they compensate each other when building the
estimate of the cascade BS-IRS-UT channel.

V. GENERALIZATIONS TO MULTI-USER SCENARIOS

Although we have focused on the single BS and single UT
scenario, the proposed approach as well as the derived results
can be easily generalized and adapted to IRS-assisted muliple-
access/multi-user MIMO systems. Let us take the uplink case as
an example. The downlink case follows exactly the same model
by just inverting the roles of BS and UT. We can distinguish two
scenarios, which are discussed as follows.

A. Multiple Users Communicate With a Single BS Via the IRS

Let us consider U UTs communicating with a single BS via
the IRS. The direct link between the UTs and the BS is assumed
to be too weak or unavailable. Assuming for simplicity that all
the users have the same number L of transmit antennas, we can
adapt equation (17) such that the contribution of the u-th user to
the received signal at the BS is given as

Yu[k] = HTDk(S)G
T
uX

T
u (44)

where Xu ∈ CT×L and Gu ∈ CL×N are respectively the u-
th user pilot matrix and uplink channel matrix. Note that the
IRS-BS channel H is common to all the users. The total signal
received from the U users at the k-th time block, in the noiseless
case, can then be expressed as

Y[k] = HTDk(S) (X1G1)
T + · · ·+HTDk(S) (XUGU )

T

= HTDk(S)

[
U∑

u=1

(XuGu)
T

]
. (45)

3The permutation ambiguity inherent to blind estimation is not present due
to the knowledge of the IRS phase shift matrix S at the receiver.

Defining X
.
= [X1, . . . ,XU ] ∈ CT×UL, and G

.
=

[GT
1, . . . ,G

T
U ]

T ∈ CUL×N , equation (45) translates to4

Y[k] = HTDk(S)Z
T

Z
.
= XG ∈ CT×N . (46)

Comparing (46) with (17), we can see that the multi-user signal
model has the same tensor structure as the single-user one, the
essential difference being on the definition of the factor matrixZ
which is now given by inner product of block matrices composed
of U blocks (each having L columns as in the single-user
scenario). Otherwise stated (46) corresponds to a PARAFAC
model ofY ∈ CM×T×K with factor matrices (HT,XG,S), and
unfoldings 1-mode and 2-mode given as Y1 = HT(S �XG)T

and Y2 = XG(S �HT)T, respectively. Since the structure of
the tensor model is not changed, both KRF and BALS algorithms
can be directly applied to the multi-user model (46) under more
restrictive choices for T , due to the fact the full rankness of X
now requires T ≥ UL. In this case, assuming that the channel
matrices have full rank, the application of Lemma 1 leads to

min(K,N) + min(UL,N) ≥ N + 1 (47)

min(K,N) + min(M,N) ≥ N + 1. (48)

These conditions are analogous to (35)–(36), by exchanging the
roles of M and L, while adding the factor U .

B. Multiple Users Communicate With Multiple BSs Via the IRS

We consider that P BSs receive the signals transmitted by
the U users via the IRS. Without loss of generality, the BSs are
assumed to be equipped with the same number M of antennas.
The model (46) is only slightly modified by adding a dependency
of the received signal on the index p of the receiving BS, i.e.,

Yp[k] = HT
pDk(S)Z

T
, Z

.
= XG. (49)

In particular, in a cooperative setting where the P BSs commu-
nicate (e.g. via a common backhauling structure), we can derive
an equivalent augmented signal model as follows

Y[k] =

⎡⎢⎣ Y1[k]
...

YP [k]

⎤⎥⎦ =

⎡⎢⎣HT
1

...
HT

P

⎤⎥⎦Dk(S)Z
T
= H

T
Dk(S)Z

T
,

(50)

where H
.
= [H1, . . . ,HP ]

T ∈ CPM×N is the composite chan-
nel combining the IRS links to the P BSs. The received signal

(50) corresponds to a PARAFAC model of Y ∈ CPM×T×K

with factor matrices (H,XG,S). Note that, differently from
the single-user single-BS model (17) and the multi-user single-
BS model (46), in the multi-user multi-BS model (50) the
dimensionality of the first mode of the received signal tensor
has been increased by a factor P due to the assumption of
cooperating BSs. In this scenario, condition (47) remains the
same, while condition (48) slightly changes to min(K,N) +
min(PM,N) ≥ N + 1.

4Note that the positions of H and G in are swapped in (46) compared to (17)
in addition to transposition, since channel reciprocity is assumed for the UT-IRS
and IRS-BS links.
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Fig. 3. NMSE of the estimated channels Ĥ and Ĝ.

As a final remark, in terms of receiver processing, it is clear
that both KRF and BALS have an increased computational
complexity in the discussed multi-user scenarios, due to the
increased dimensionality of the channel matrices G and H.

VI. NUMERICAL RESULTS

In this section, several numerical results are presented to
evaluate the performance of the proposed channel estimation
methods, while comparing to competing approaches. We also
evaluate the CRB as a reference for comparisons. The channel
estimation accuracy is evaluated in terms of the normalized mean
square error (NMSE) given by

NMSE(Ĥ) =
1

R

R∑
r=1

‖H(r) − Ĥ(r)‖2F
‖H(r)‖2F

, (51)

where Ĥ(r) is the BS-IRS channel estimated at the r-th run, and
R denotes the number of Monte Carlo runs. The same definition
applies to the estimated IRS-UT channel. The SNR (in dB) is
defined as

SNR = 10log10(‖[Y ]‖2F /‖[B]‖2F ), (52)

where Y is the noiseless received signal tensor generated ac-
cording to (18), and B is the additive noise tensor.

We assume that the entries of the BS-IRS and IRS-UT chan-
nel matrices H and G are independent and identically dis-
tributed zero-mean circularly-symmetric complex Gaussian ran-
dom variables. The Figures 3, 5 and 6, represent an average from
R = 5000 run Monte Carlo runs for the fixed system parameters
{T = 4, L = 2,K = 50,M = 3} and N ∈ {50, 100}.

Fig. 3 depicts the NMSE vs. SNR curves for the KRF and the
BALS algorithms. We can see that both algorithms provide satis-
factory performances. The performance degrades as the number
of IRS elements is increased, which is an expected result since
the number of channel coefficients in G and H to be estimated
also increases with N . In Fig. 4, the NMSE of the composite
parameter vector θ is shown. The parameters used get this figure
was K = 100, M = 3, T = 4, L = 20, N ∈ {10, 50, 100} and
1000 Monte Carlo runs. The results are in line with those of the

Fig. 4. NMSE for the equivalent channel θ̂.

Fig. 5. Average runtime of KRF and BALS algorithms.

Fig. 6. Number of iterations to convergence of the BALS algorithm.

previous figure, where we observe a performance degradation as
N is increased, which confirms our expectations. An approach to
overcome such a performance degradation is to partition the IRS
into groups, and activate/deactivate each group in a sequential
way in the time domain, so that the at each time, the sub-channels
associated with a given group are estimated [22], [55], [56]. This
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Fig. 7. NMSE of the estimated cascaded channel via the method of [57].

approach, however, would increase the total training time by a
factor corresponding to the number of groups. The following
experiments compare the average runtime of KRF and BALS.
The results are depicted in Fig. 5, and corroborate the higher
complexity of BALS compared to KRF. Note that the runtime
of BALS grows faster then that of KRF with the increase on the
numberN of IRS elements. On the other hand, as we pointed out
earlier (comparison between (31) and (32)), BALS can operate
under less restrictive choices (smaller values) for K in compar-
ison to KRF. Hence, there is a tradeoff between complexity and
operating conditions for the two proposed channel estimation
methods.

In Fig. 6, we evaluate the required number of iterations of
the BALS algorithm to achieve the convergence according to
the criterion discussed in Section III-B. We can note that the
required number of iterations grows with N , as expected. The
difference in the convergence speed for different values of N
is more pronounced in the low SNR range. For high SNRs, the
convergence becomes less sensitive to N .

In Fig. 7, we consider the uplink multi-BS scenario, which
follows the signal model (50). We assume P = 2, M = 1, and
U = 1. We compare the KRF receiver with a competing channel
estimation method proposed recently in [57], which consid-
ers the single-antenna multi-user reception scenario5. Therein,
the channel estimation requires three sequential stages, i.e.,
three time windows. In the first stage, the direct channel is
estimated. In the second one, the equivalent channel between
the first user and the BS is estimated. Finally, in the third
stage, the channel associated with the remaining users are es-
timated. Similar to our model, in [57] the equivalent channel
is obtained by stacking the contributions of the U users, i.e.,
G �H = [(Hdiag(g1))

T, . . . , (Hdiag(gU ))
T]T. We can see that

KRF outperforms the competing method, providing an SNR gain
of nearly 5 dB. Indeed, KRF jointly estimates all the involved

5In [57] the authors assume multiple receiving single-antenna UTs and a
single multi-antenna BS in the downlink, while our model (50) assumes multiple
receiving BSs and a single multi-antenna UT in the uplink. Due to the channel
reciprocity assumption, the signal model of [57] is equivalent to our signal model
(50). For a fair comparison, we assume P = 2 UTs for the channel estimation
method of [57]. In this case, the dimensions of the channel matrices are exactly
the same for both methods.

Fig. 8. Normalized CRB for the equivalent Khatri-Rao channel θ.

channels in a single training stage, while in [57] the channel
estimation is carried out in a sequential way, which can induce
error propagation. This is a key difference that explains the
performance gap in Fig. 7.

In Fig. 8, we compare the results of the proposed KRF
method with the conventional LS method. In this experiment, we
consider K = N = 50, T = M = 20, L = 8, and 1000 Monte
Carlo runs. The CRB derived in Appendix A (equations (68)-
(68)) is also plotted here as a reference for comparison. Recall
that the CRB considers the equivalent linear model obtained
from the vectorized version of the received signal model given
in (15), which we repeat here for convenience

y = vec (Y) = Uθ + b,

where U = (S⊗ X̃) and θ = vec(HT �G) ∈ CMNL is the
parameter vector consisting of a vectorized version of the
(Khatri-Rao structured) channel matrix combining the IRS-UT
and the BS-IRS channel matrices. The conventional LS method
plotted in the figure estimates this vectorized channel parameter
as θ̂ = U†y, which ignores the Khatri-Rao structure that is lost
in the vectorization of the signal model. In contrast, the pro-
posed KRF method exploits the Khatri-Rao channel structure,
and builds θ̂ from the decoupled estimates Ĥ and Ĝ obtained
according to Algorithm 1. We can see that the LS solution attains
the CRB. Furthermore, an interesting result can be noted. The
proposed KRF algorithm outperforms the LS solution. The gain
in terms of SNR is around 7 dB. This result is explained by the
fact that KRF effectively exploits the Khatri-Rao structure that
is present in the equivalent channel model. Note that the KRF
method solves the problem by reshaping the ML×N Khatri-
Rao channel in the form of N IRS subchannels of dimension
M × L, which provides a noise rejection gain thanks to the
rank-1 approximation steps. Naturally, when M and L increase
(which is the case, for instance, when assuming massive antenna
arrays at the BS and UT), the larger is the spreading of the noise
across the noise subspace and, consequently, higher levels of
noise rejection will be achieved. This is a distinctive feature of
the KRF method that is not exploited by the conventional LS
channel estimator.
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Fig. 9. NMSE of the θ̂ assuming that Ĥ and Ĝ are rank-deficient.

In Fig. 9, we assume that the channel matrices H and G
are rank-deficient. In this experiment, the channel matrices are
generated according to the model given in (40)-(41). We assume
uniform linear arrays at the BS and UT. The IRS has a uniform
rectangular array structure. The angles of arrival (AoAs) and
angles of departure (AoDs) are randomly generated according
to a uniform distribution. At each Monte Carlo run, the azimuth
and elevation angles are drawn within the intervals [−π/2, π/2]
and [0, π/2], respectively. We consider a single path scenario,
where R1 = R2 = 1, and assume K = N = 64, L = 4 and
T = M ∈ {4, 20}. As a reference for comparison, we also plot
the NMSE of the LS-based channel estimation method proposed
in [58]. Therein, the time-domain pilot protocol is the same as the
one considered in this work, which consists of dividing the total
training time into K blocks across which the phase shift pattern
of the IRS is varied. In [58], a two-stage scheme is proposed.
In the first stage, the cascaded channel Ck = GDk(S)H asso-
ciated with every time block k is individually estimated via an
LS method. We refer to this approach as a “block-LS” method.
The second stage extracts the AoA and AoD parameters by
combining the K cascaded channel matrices. Since our method
does not estimate the angular parameters of the channel matrices,
we compare the proposed KRF method with the first stage of the
block-LS method of [58], which also provides the unstructured
estimate of the channel matrices H and G. We can see that KRF
outperforms block-LS in the two considered system setups. Note
that the performance of the block-LS method is not affected
when the number M of transmit antennas (assuming T = M ) is
increased. This is in contrast to the KRF method that provides
more accurate channel estimates for larger antenna arrays. In
particular, the SNR gain of KRF over block-LS is nearly 3.5 dB
for M = T = 4, and increases to 5.5 dB for M = T = 20.
Indeed, higher values of M and/or L imply higher levels of
noise rejection provided by the KRF method via exploiting the
Khatri-Rao structure of the cascaded channel. These gains come
at the expense of an increased computational complexity, as
well as an increase on the length of the pilot sequences. Note
that the channel ranks R1 and R2 do not need to be known by
our channel estimation methods. Nevertheless, a performance

Fig. 10. TALS performance under IRS amplitude/phase perturbations.

enhancement could be obtained by exploiting the knowledge of
these ranks (see, e.g. methods like [59]), or, alternatively, by
means of compressed sensing methods that capitalize on sparse
representations of the channel matrices H and G. This is an
interesting topic for a future research.

In Fig. 10, we assume that the IRS is affected by ampli-
tude and phase perturbations, as well as unknown blockages,
due to hardware and/or environmental-induced impairments.
In this scenario, the receiver has an imperfect knowledge of
the IRS phase shift matrix. The estimation/refinement of these
phase shifts is carried out using the TALS algorithm, which
extends BALS by including an additional LS estimation step
associated with the update of S within the loop, as discussed in
Section III-D. To model these impairments, we assume sk,n =
(ak,nfk,n)s̄k,n, where s̄k,n is the originally designed phase shift
(i.e., (k, n)-th element of a DFT matrix), ak,n ∈ {0, 1} models
the presence or not of a blockage at the n-th element and k-th
block, fk,n ∼ CN(0, γ)models the hardware impairments [60],
[61], and γ denotes the variance of these perturbations. In the
TALS algorithm, the initialization of Ŝ is chosen as a DFT ma-
trix, following its original design. This initialization always pro-
vides better results than a random one. Our simulations assume
T = M = 50, K = 100, L = 4, γ = 0.01, 20% blocked IRS
elements, and i.i.d. channel matrices. Although a performance
degradation is observed in comparison with the perfectly-known
IRS phase shifts case, we can see that the TALS algorithm
can handle this more challenging scenario. In particular, the
NMSE gap with respect to the ideal case increases as more
elements are used in the IRS. Indeed, in the imperfect IRS
scenario, the total number of parameters to be estimated by the
TALS algorithm is (K +M + L)N , in contrast to (M + L)N
in the perfectly-known IRS case, implying an addition of KN
unknown factors.

VII. CONCLUSION AND PERSPECTIVES

We have proposed novel pilot-assisted receiver designs for
IRS-assisted MIMO communication systems via a tensor mod-
eling approach. The proposed KRF and BALS receivers effec-
tively exploit the tensor structure that is present in the received
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signal. Both solutions yield decoupled estimates of the BS-IRS
and IRS-UT channels at the receiver for a passive IRS. The
closed-form KRF method has a lower complexity but a more re-
strictive requirement on the training parameterK, while the iter-
ative BALS method, although being more computationally com-
plex, can operate under more flexible choices for this parameter
with a lower training overhead. Our design recommendations
provide useful conditions on the system parameters that guar-
antee the uniqueness of the channel estimates. Our numerical
results have demonstrated the superior performance of KRF and
BALS compared to the conventional LS estimator, which ignores
the Khatri-Rao structure of the combined channel matrix. In
addition, the proposed tensor modeling approach allows to deal
with a nonideal setup where the IRS phase shifts are not perfectly
known at the receiver due to phase perturbations/fluctuations.
In this more difficult setup, leveraging the trilinear structure of
the received signal by means of a TALS algorithm provides us
a joint estimation of the channel matrices and the IRS phase
shift matrix. The proposed solutions also provide better results
than recently proposed competing methods. Generalizations of
our tensor modeling approach to multi-user scenarios have also
been discussed, and analytical expressions for the CRB have
been derived. The proposed approach can easily be extended
to better deal with the millimeter wave scenario by assum-
ing hybrid analog digital structures at the BS and UT sides.
Combining the proposed algorithms with compressed sensing
methods could provide further performance enhancements for
low-rank (sparse) channels. In addition, leveraging to data-
driven receivers capable of a joint channel estimation and symbol
recovery would be desirable to save training resources. To this
end, an extension of the proposed tensor modeling approach to
the semi-blind case is a perspective of this work.

APPENDIX A
EXPECTED CRAMÉR RAO LOWER BOUND

In the following, we derive the closed-form CRB expressions
for the channel estimation problem proposed in this work. The
CRB provides the lower bound on the variance of achieved by an
unbiased estimator. If θ̂ is an unbiased estimate of θ, the NMSE
measurements is lower bounded by the CRB such as,

E‖θ − θ̂‖2 ≥ Tr{CRB(θ)}, (53)

where CRB(θ) is given as the inverse of the Fisher Information
Matrix (FIM), denoted by F(θ), such as

CRB(θ) ≥ F(θ)−1. (54)

An extension for complex-valued parameters is derived in [62]

by working on the structured parameter vector θc = [θ̄
T
θ̃

T
]T,

where θ̄ = Re(θ), and θ̃ = Im(θ). Thereby, with a nuisance
parameter γ, the CRB for complex-valued random parameters
is given as

E‖θc − θ̂c‖2 ≥ Eθ̄,˜θ,γ

{
Tr{CRB(θ̄)}+ Tr{CRB(θ̃)}

}
.

(55)

For an observation vector that follows a complex circular
Gaussian distribution, y ∼ CN(μ,R), a useful way used to

obtain the FIM is to use the Slepian-Bangs (SB) formula [63]:

[F(θ)]i,j = 2Re

{(
∂μ

∂[θ]i

)H

R−1

(
∂μ

∂[θ]j

)}
(56)

+ Tr

{(
∂R

∂[θ]i

)
R−1

(
∂R

∂[θ]j

)
R−1

}
. (57)

Let us recall (22):

[Y](3) = S
[
(X⊗ IL)

(
HT �G)]T

= S
(
HT �G)T

(X⊗ IL)
T , (58)

or, equivalently,

[Y]T(3) = (X⊗ IL)
(
HT �G)

ST. (59)

Considering the vectorized version of the 3-mode unfolding
[Y]T(3), the following linear model with respect to the parameters
of interest is obtained according to

y = vec
(
[Y]T(3)

)
= Uθ, (60)

where U = (S⊗X⊗ IL), and

θ = vec
(
HT �G) ∈ CMNL (61)

denotes the vectorized version of the Khatri-Rao structured
channel. From the observation vector y given by (60), the
statistics of the noisy observation is given by

y ∼ CN (μ1,R1) , (62)

where,

μ1 = Uθ, (63)

R1 = σ2I. (64)

AsR1 parameter-invariant, the second term of the SB formula
vanishes, hence the (2MNL)× (2MNL) FIM, obtained after
the calculation from (56), is given by

F(θc) =
2

σ2

[
Re{UHU} −Im{UHU}
Im{UHU}T Re{UHU}

]
. (65)

Considering the trace and the inverse of a 2× 2 block matrix,
we obtain

Tr{CRB(θ̄)} =
σ2

2
Tr

{(
M̄+ M̃M̄−1M̃

)−1
}
, (66)

Tr{CRB(θ̃)} =
σ2

2
Tr

{
M̄−1 − M̄−1M̃

(
M̄

+M̃M̄−1M̃
)−1

M̃M̄−1

}
, (67)

where M̄ = Re{UHU} and M̃ = Im{UHU}. Let us re-
call that U = (S⊗X⊗ IL), XHX = T IM , and SHS = KIN .
Hence, UHU = KT IMNL. This implies that M̃ = 0. The two
above expressions can be simplified as

CRB(θ̄) =
σ2

2KT
IMNL, (68)
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CRB(θ̃) =
σ2

2KT
IMNL. (69)

Therefore, using definition (55):

E‖θc − θ̂c‖2 ≥ σ2

KT
MNL. (70)

It is important to note that there is no need to derive the
mathematical expectation in the right-hand side of (55) over
the parameters of interest and of nuisance due to the simple
expression of the CRB.

APPENDIX B
SIMPLIFIED VERSION OF BALS

Under the column-orthogonality assumption for X and S, the
right pseudo-inverses in (29) and (30) can be replaced by lower
complexity matrix products, leading to a faster implementation
of the BALS algorithm. Defining M1

.
= S �XHT and M2

.
=

S �G, and using property (2), we have

MH
1M1 = (SHS)� (HXHXHH)

= KT

⎡⎣ ‖h1‖2
. . .

‖hN‖2

⎤⎦ .
= KTΣH (71)

and

MH
2M2 = (SHS)� (GHG)

= K

⎡⎣ ‖g1‖2
. . .

‖gN‖2

⎤⎦ .
= KΣG, (72)

which implies that

Ĝ = (1/KT ) ·Y1M
∗
1Σ

−1
H (73)

ĤT = (1/KT ) ·XHY2M
∗
2Σ

−1
G . (74)

Due to the diagonal structure of ΣH and ΣG, these expressions
provide lower complexity implementations of (29) and (30),
respectively, by replacing matrix inversions by simpler matrix
products. In particular, each update of Ĝ and Ĥ can be viewed
as a set of N independent processes (one for each IRS element)
that can be carried out in parallel. The BALS is summarized in
Algorithm 3.
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