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Abstract—The promising gains of reconfigurable intelligent
surface (RIS)-assisted multiple-input multiple-output (MIMO)
systems, in terms of extended coverage and enhanced capac-
ity, are critically dependent on the accuracy of the channel
state information. However, traditional channel estimation (CE)
schemes are not applicable in RIS-assisted MIMO networks
since passive RISs typically lack the signal processing capabilities
that are assumed by CE algorithms. This becomes problematic
when physical imperfections or electronic impairments affect the
RIS due to its exposition to different environmental effects or
caused by hardware limitations from the circuitry. While these
real-world effects are typically ignored in the literature, in this
paper, we propose efficient CE schemes for RIS-assisted MIMO
systems, taking different imperfections into account. Specifically,
we propose two sets of tensor-based algorithms based on the
parallel factor analysis decomposition schemes. First, assuming
a long-term model – where the RIS imperfections, modeled as
unknown phase shifts, are static within the channel coherence
time – we formulate an iterative alternating least squares (ALS)-
based algorithm for the joint estimation of the unknown phase
deviations and the communication channels. Then, we develop
the short-term imperfection model, which allows both amplitude
and phase RIS imperfections to be non-static with respect to
the channel coherence time. We propose two iterative ALS-based
and closed-form higher-order singular value decomposition-based
algorithms for jointly estimating the channels and the unknown
impairments. We also investigate the computational complexity
and the identifiability of the proposed algorithms and study the
effect of various imperfections on the CE quality. Simulation
results show the effectiveness of our proposed tensor-based
algorithms in terms of estimation accuracy and computational
complexity.

Index Terms—Channel estimation, hardware impairments, ten-
sor modeling, MIMO systems, reconfigurable intelligent surface.

I. INTRODUCTION

The steadily increasing demands for ubiquitous wireless
services drive the efforts by the research and standardiza-
tion communities to improve coverage, system capacity as
well as the reliability and quality of a growing number of
applications [1], [2]. The continuous growth of the number
of mobile subscriptions, devices, and traffic increases the
number of deployed infrastructure nodes, which makes capital
and operational expenditures as well as energy consumption
challenging for mobile network operators [3]. In this con-
text, reconfigurable intelligent surface (RIS) has emerged as
a potential technology for future wireless networks [4]–
[6]. An RIS is a planar structure that contains several low-
cost passive reflecting elements that independently manipulate
the parameters of the impinging signal, such as amplitude,
phase, frequency, and polarization, not requiring any RF chain

[7], [8]. In this sense, the passive control of the incident
wave makes the RIS a power-efficient and low-complexity
technology [9]–[12].

The benefits of the RIS are greatly dependent on the
quality of the available channel state information (CSI). This
is because CSI is required to jointly design the passive and
active beamformings [13], [14]. Due to the passive nature of
the RIS, channel estimation (CE) of the involved channels (i.e.,
gNB-RIS and RIS-user equipment (UE)) is not performed at
the RIS but only on gNB or UE side. Recognizing this issue
[15] proposes an ON/OFF method1, in which the cascaded
channel (gNB-RIS-UE) is estimated. In this sense, [16] ex-
ploits compressed sensing (CS) and deep learning tools to
reduce the training overhead. Reference [17] proposes a new
signal modeling based on a proper vectorization and reduction
operation for the channel estimation. Apart from pilot-assisted
channel estimation, recently, reference [18] provides a solution
to jointly estimate the symbols and recover the signal, which
can imply a pilot overhead reduction.

In a realistic scenario, the RIS is subject to physi-
cal/hardware limitations or environmental impairments, e.g.,
water precipitations, snowflakes, sleet, dry/damp sand parti-
cles) [19]–[22]. A more realistic performance evaluation of
RIS potential gains must take these issues into account. The
presence of such nonidealities can be modeled as unwanted
amplitude response attenuation and phase shift perturbations,
leading to static or time-varying distortions in the received
signal [23]–[27]. The presence of these impairments makes
the channel estimation task even more challenging. The papers
[19] and [20] propose channel estimation schemes that take
into account RIS impairments in the context of single- and
multi-user MIMO systems, respectively. However, these works
do not capture/model the temporal variations of the RIS
imperfections while considering a geometrical channel model.
Differently from [19] and [20], we consider both short and
long-term time-varying RIS impairments. Other works have
investigated the effect of hardware impairments in RIS-assisted
communications, such as [28] and [29]. The first investigates
the beamforming design under hardware impairments, while
the second concentrates on RIS diagnosis. However, these
works do not consider the channel estimation problem.

Tensor algebra has been successfully applied to signal mod-
eling and processing in wireless communications by exploiting
the intrinsic multidimensional structure of wireless signals and

1It is worth mentioning that [15] considers a non-perfect ON/OFF reflection
mode, which is of interesting practical aspect.
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channels [30]–[32]. More recently, tensor-based approaches
have been applied to the context of RIS-assisted wireless
communications. The works [24] and [33] capitalize on the
parallel factor (PARAFAC) decomposition to formulate an
efficient iterative algorithm based on the ALS concept to
solve the CE problem. Also, in [34] the authors develop a
PARATUCK tensor model and semi-blind CE is carried out.

Tensor-based RIS-assisted channel estimation schemes al-
low the decoupling of the BS-RIS and RIS-UE channels while
providing more flexible system parameter settings to be used
for training [24]. In this paper, we enjoy the advantages
of tensor modeling and tackle the joint channel and RIS
imperfections estimation, by considering two relevant time-
varying RIS impairments models. The main contribution of
this paper can be summarized as follows.

• We propose tensor-based algorithms for the joint esti-
mation of the involved channels and imperfections in
RIS-assisted MIMO systems. We take both the long- and
short-term imperfections into account. First, we show
that the received signal under the long- and short-term
imperfection models can be recast as tensors following
trilinear and quadrilinear PARAFAC models, respectively.

• Exploiting the multi-linear structure of these models,
we derive two sets of tensor-based algorithms. For the
long-term imperfection (LTI) model, in which the RIS
imperfections, modeled as unknown phase shifts, are
static within channel coherence time, we formulate an
iterative trilinear ALS-based algorithm called TALS-LTI
for the joint estimation of the involved channels as well
as the unknown RIS phase deviations.

• We generalize the imperfections behavior to be non-
static with respect to the channel coherence time, re-
ferred to as the short-term imperfection (STI) model. For
such a more challenging scenario, we propose iterative
and closed-form tensor decomposition-based algorithms
named TALS-STI and HOSVD-STI, respectively, to solve
the joint channel and RIS imperfections estimation.

• We also study the identifiability of the proposed es-
timators, discuss their computational complexity and
investigate the effect of imperfections on the network
performance. The key features of the proposed tensor-
based algorithms are their ability to properly estimate the
channel and their robustness to different kinds of real-
world imperfections at the RIS.

The simulation results show that, compared to the state-
of-the-art methods, the proposed algorithms properly estimate
the involved channels when different kinds of imperfections
are takes into account. As a example, in the high signal-to-
noise ratio (SNR) regime, our proposed algorithms improve
the CE by approximately 100x compared to the method of
[24], while present performance close to the lower-bound least
squares (LS) estimator. Also, our proposed algorithms reduce
considerably the overall computational complexity, compared
to the related state-of-the-art method. Finally, the proposed
TALS-LTI and TALS-STI algorithms are more flexible in
the choices of training parameters compared to the proposed
HOSVD-STI algorithm. Thus, the TALS-LTI and TALS-STI

algorithms are preferable when more flexible choices for
training parameters are required, while the HOSVD-STI is
preferred when a low processing delay is desired.

The rest of this paper is organized as follows. In Section
II, the signal model of the RIS-assisted MIMO communication
system operating under imperfections is introduced. We distin-
guish between two different types of imperfections under the
RIS operation, namely, LTI and STI. Then, the CE problem
is discussed for the LTI and STI scenarios. These signal
models are reformulated as higher-order tensors following
trilinear and quadrilinear PARAFAC models, from which two
sets of iterative and closed-form tensor-based algorithms are
developed for joint estimation of the involved channels and
the RIS imperfections (Section III). A detailed identifiability
analysis and its link to the system design recommendations
as well as the computational complexity of the proposed
tensor-based algorithms are provided in Section IV. Simulation
results are presented in Section V. Finally, conclusions are
drawn in Section VI.
Notations and properties2: The notation conventions and the
properties that will be used throughout this paper are defined
in the following. Scalars are denoted by lower-case letters
(a), column vectors by bold lower-case letters (a), matrices
by bold upper-case letters (A) and tensors are represented
by upper-case calligraphic letters (A). Then, AT and A†

stand for the transpose and Moore-Penrose pseudo-inverse
of A, respectively. The operator vec(·) vectorizes its matrix
argument by stacking its columns on top of each other, while
vecd(·) generates a vector out of the diagonal of its matrix
argument. Also, ∥ · ∥F is the Frobenius norm of a matrix
or a tensor, which is defined as the square root of the sum
of the squared of its elements. ⌈x⌉ is equal to the smallest
integer that is greater than or equal to x. Moreover, IM is the
M ×M identity matrix and j =

√
−1 is the imaginary unit.

The operator Di (A) generates a diagonal matrix from the i-
th row of its matrix argument A, while the operator diag(a)
generates a diagonal matrix out of its vector argument a. We
define the Kronecker, Hadamard (element-wise product) and
the outer product operators by ⊗, ⊙ and ◦, respectively. The
Khatri-Rao product (column-wise Kronecker product) between
two matrices can be defined as

A ⋄B .
=

[
D1 (A)BT, . . . ,DQ (A)BT]T

, (1)

where A = [a1, . . . ,aQ] ∈ CI×Q and B = [b1, . . . ,bQ] ∈
CJ×Q. Further, we shall make use of the following properties
of the Khatri-Rao and Kronecker products

vec
(
Adiag (c)BT) = (B ⋄A) c,∀A,B, c, (2)

a⊗ b⊗ c = vec (c ◦ b ◦ a) ,∀a,b, c. (3)

II. SIGNAL MODEL AND PROBLEM DESCRIPTION

In this section, we first introduce the signal model and
describe in detail the two considered LTI and STI models.

2The definitions and operations involving tensors are in accordance with
[35] and [36]. The n-mode unfolding matrix of A along its n-th mode (or
dimension) is represented by [A](n). The n-mode product between A and
B, returns a tensor C = A×n B such that [C](n) = B [A](n).
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Fig. 1: An illustration of a RIS-assisted MIMO wireless communi-
cation system operating under imperfections.

Fig. 2: An illustration of the considered CE protocol. The training
time is divided into K time-blocks of duration T symbol periods
each. The RIS activation pattern s[k] is fixed during the k-th
time-block and varies between different time-blocks while the pilot
symbols x[1], . . . ,x[T ] are reused from block-to-block.

Our goal is to estimate the RIS-related channels and the RIS
imperfection. As shown in Figure 1, we assume that the direct
Tx-Rx link is too weak or unavailable, the focus being on the
RIS-assisted link. Note, however, that if the Tx-Rx link is
available, the direct channel can be estimated separately via
any state-of-the-art MIMO channel estimation method.

A. RIS Operating under LTI

We consider a single-user narrowband RIS-assisted MIMO
communication system, in which the transmitter (Tx) and
the receiver (Rx) have arrays composed of M and L an-
tennas, respectively. Without loss of generality, although this
work assumes a downlink communication, our signal models
also apply to the uplink communications by inverting the
roles of the Tx and the Rx. To improve the communication
performance, an RIS with N individually adjustable passive
reflecting elements is deployed in a proper place that creates an
alternative Tx-RIS-Rx link. The direct Tx-Rx link is assumed
to be too weak or unavailable due to unfavorable propagation
conditions. We also assume a block-fading channel where
the Tx-RIS and RIS-Rx channels remain constant for at least
k = 1, . . . ,K, time-blocks, each with duration of T symbols,
representing a total duration of KT symbol periods dedicated
for CE within the channel coherence time.

Let us define the RIS activation pattern s [k] ∈ CN×1

configured at the k-th time-block as

s [k] =
[
β1,ke

jϕ1,k , . . . , βN,ke
jϕN,k

]T ∈ CN×1, (4)

where 0 ≤ ϕn,k ≤ 2π and 0 ≤ βn,k ≤ 1 denote the phase
shift and the amplitude reflection coefficient of the n-th RIS
element tuned at the k-th time-block ∀n = 1, . . . , N , and
∀k = 1, . . . ,K, respectively. As a protocol for CE we assume
the following (see Fig. 2):
1) At each time-block k = 1, . . . ,K, of duration T , the
elements of s [k] are dynamically tuned in a passive way via
the smart controller;
2) The activation pattern s [k] remains constant within the
k-th time-block but may vary between different time-blocks,
yielding a total of s [1] , . . . , s [K] different adjustable patterns
to the RIS during the CE stage;
3) The pilot symbol x [t, k] ∈ CM×1 transmitted at the t-th
symbol period within the k-th time-block is reused for each
k = 1, . . . ,K, i.e., x [t, k] = x [t] ∀k = 1, . . . ,K.

The baseband received pilot signal y [t, k] ∈ CL×1 asso-
ciated with the t-th symbol period at the k-th time-block is
given by

y [t, k] = Gdiag (s [k])HTx [t] + v [t, k] . (5)

Collecting the received signals during the T symbol periods
at the k-th time-block, the model in (5) can be rewritten as

Y [k] = Gdiag (s [k])HTX+V [k] ∈ CL×T , (6)

where Y [k] = [y [1, k] , . . . ,y [T, k]] ∈ CL×T . The matrices
H ∈ CM×N and G ∈ CL×N are the Tx-RIS and RIS-Rx
channels, respectively, while X = [x [1] , . . . ,x [T ]] ∈ CM×T

collects the pilot signals transmitted within the k-th time-
block, and V [k] = [v [1, k] , . . . ,v [T, k]] ∈ CL×T is the
additive white Gaussian noise (AWGN) matrix with zero mean
and unit variance elements. In order to simplify our formula-
tion and analysis, without loss of generality, we assume the
transmission of the pilot signal X = IM .

In this work, a special attention is given to the structure of
the RIS activation pattern. In practice, some imperfections at
the RIS elements are common to occur. Initially, we assume
the case in which such imperfections induce long-term static
phase shift perturbations at the RIS response. Such imper-
fections may come from, e.g., phase noise due to the finite
resolution of the phase shifts or by phase estimation errors
from imperfect CE. In the presence of these imperfections, the
structure of the RIS activation pattern is modified in an unde-
sired manner leading to the following resulting RIS reflection
pattern that incorporates the imperfection contributions:

s̄ [k] =
[
β1,ke

j(ϕ1,k+θ1), . . . , βN,ke
j(ϕN,k+θN )

]T

= e⊙ s [k] ∈ CN×1.
(7)

Here, 0 ≤ θn ≤ 2π ∀n = 1, . . . , N denotes the phase
shift perturbation that affects the n-th RIS element. where
the entries of the random vector e ∈ CN×1 that collects all
unknown existing phase perturbations are defined as

en =

{
1, non-impaired case
ejθn , otherwise, (8)
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(a) An illustration of the LTI model. The vector e with phase
perturbations is static during the KT symbol periods.

(b) An illustration of the generalized STI model with time-varying
RIS fluctuations during the channel coherence time.

Fig. 3: Illustration of the LTI and STI models considered in
the paper.

for n = 1, . . . , N . Making use of definitions in (7) and (8),
the impaired version of the received signal at the Rx node in
(6) can be expressed as

Y [k] = Gdiag

e⊙ s [k]︸ ︷︷ ︸
s̄[k]

HT +V [k] ∈ CL×M , (9)

∀k = 1, . . . ,K. Equivalently, in matrix form we have

Y [k] = Gdiag (e)Dk (S)H
T +V [k] , (10)

where S = [s [1] , . . . , s [K]]
T ∈ CK×N collects in its rows the

RIS activation patterns used accross K time-blocks specifically
configured for the CE.

Particularly, the impaired received signal in (10) considers
an RIS operating under LTI that induces phase shift pertur-
bations in the reflected signals. In other words, in this model
we assume that the vector e ∈ CN×1 is formed only by phase
components that remain static within the KT symbol periods.
Figure 3a illustrates the considered LTI model. This occurs,
for instance, when the behavior of the imperfections at the RIS
elements are static compared to the channel coherence time.

B. RIS Operating under STI

Here, we assume that the CE occurs after the receiver
collects p = 1, . . . , P , frames composed of KT symbol
periods each. The division of the reception time into P frames
is motivated by possible short-term variations caused by the
RIS imperfections, i.e., the imperfections changing more fre-
quently. In this approach, the behavior of the imperfections
induces both amplitude and phase perturbations in the RIS
elements and have a non-static nature with respect to chan-
nel coherence time but they present stationary characteristics
within each frame. Figure 3b illustrates the considered STI
model. In contrast to the received signal model formulated
in (10), this assumption implies that such imperfection model
takes into account rapid amplitude and phase fluctuations at
the RIS elements during the channel coherence time. Note that
the STI induces a block-fading effect in the signals reflected by

the RIS during the PKT symbol periods for CE. Therefore, by
considering a RIS operating under this STI model the resulting
reflection pattern related to the k-th time-block at the p-th
frame can be written as

s̄ [p, k] =
[
e1,pβ1,ke

jϕ1,k , . . . , eN,pβN,ke
jϕ1,k

]T

= e [p]⊙ s [k]CN×1 ,
(11)

where e [p] = [e1,p, . . . , eN,p]
T ∈ CN×1 ∀p = 1, . . . , P ,

depends on the p-th received frame and models the unknown
non-static amplitude and phase fluctuations along the training
time. The entries of the random vector e [p] associated with
the p-th frame are defined as

en,p =

{
1, non-impaired case
αn,p · ejθn,p , otherwise, (12)

where 0 ≤ αn,p ≤ 1 and 0 ≤ θn,p ≤ 2π ∀n = 1, . . . , N , and
∀p = 1, . . . , P , denote the unwanted amplitude attenuation and
phase shift perturbations that affect the n-th RIS element at the
p-th frame, respectively. It is important to note that the model
in (12) captures different kinds of real-world imperfections at
the RIS. For example, we can note the follow situations:
1) αn,p ̸= 0 and θn,p ̸= 0 represent the amplitude absortion
and phase shift caused by an object suspended on the n-th
RIS element [19], or caused by hardware impairments in the
electronic circuits that make up the RIS [37].
2) αn,p = 1 and θn,p ̸= 0 represent the phase noise
perturbations from low-resolution phase shifts or phase errors
from imperfect CE [23]- [27].
3) αn,p = 0 represents the maximum absorption i.e., the n-th
RIS element is completely blocked [19].
4) αn,p = 1 and θn,p = 0 represents the non-impaired RIS in
which no imperfection affects its n-th element. Note that in
this ideal case s̄ [p, k] = s [p, k] holds since en,p = 1 ∀n =
1, . . . , N , and ∀p = 1, . . . , P .

We also observe that the LTI model presented in Section
II-A is a particular case of the generalized STI model when
αn,p = 1 for P = 1 and n = 1, . . . , N . However, we study
these two cases separately for a clearer description of the static
and non-static imperfection scenarios.

By considering an RIS operating under the STI model, we
can rewrite the received signal in (9) as

Y [p, k] = Gdiag

e [p]⊙ s [k]︸ ︷︷ ︸
s̄[p,k]

HT +V [p, k] , (13)

∀p = 1, . . . , P , and ∀k = 1, . . . ,K. In a more convenient form
for our formulation, the received signal (13) can be written in
its complete matrix and decoupled format as

Y [p, k] = GDp (E)Dk (S)H
T +V [p, k] , (14)

where each row of the matrix E = [e [1] , . . . , e [P ]]
T ∈ CP×N

collects the amplitude and phase parameters for the RIS
elements impaired at the p-th frame. Throughout this work,
for the two approaches formulated in Sections II-A and II-B,
we assume that a number of NB = NRB random elements
at the RIS are subject to imperfections, where RB ∈ [0, 1]
denotes its occurrence probability.
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C. Problem Description

In (7) and (11), the RIS reflection pattern corrupted with
errors s̄ [k] and s̄ [p, k] induce unwanted amplitude and/or
phase shift responses in the reflected signal by the RIS
creating a mismatch between the ideal reflection pattern and
the one that is actually applied by the RIS. To deal with these
imperfections, in this work, we propose to jointly estimate
the involved channels G and H, as well as the unknown
imperfections that affect the NB impaired elements at the
RIS. Decoupled estimations of the channels are required,
for instance, to optimize the phase shifts at the RIS, the
transmit precoder at the transmitter and the receive combiner
at the receiver in order to maximize the rate and energy
efficiencies in the data transmission phase [13], [38]. However,
the issues of how to utilize the estimated channels to jointly
optimize the RIS phase shifts, the transmitter and receiver
active beamformers, as well as the control overhead problem
of optimal phase shifts [39], [40] are out of the scope of this
work and will be addressed in future work.

In the following, we show that the received signal models
in (10) and (14) can be represented as third- and fourth-
order tensor models, respectively. Then, we show how such
higher-order representations serve as reference models for the
development of efficient PARAFAC-based algorithms to solve
the CE problem for more realistic scenarios where the RIS
operates under LTI and STI.
Remark 1: Once could also consider discrete (quantized) phase
shifts for the RIS. As shown in [41], [42], quantization errors
due to finite phase shift resolution do not significantly affect
the overall system performance and can be easily incorporated
into the hardware impairment vector e as an additional phase
shift noise perturbation term. Hence, the proposed algorithms
can also be applied to the quantized phase shift case.

III. PROPOSED CE ALGORITHMS

In this section, we propose three different CE algorithms
for the cases with LTI and STI.

A. TALS Algorithm for RIS Operating under LTI (TALS-LTI)

We initially consider the scenario with NB unknown passive
elements of the RIS being affected by LTI as presented in
Section II-A. The values of the phase perturbations as well as
their positions are assumed to be unknown at the receiver.

For simplicity of presentation and without loss of generality,
we neglect the noise term in our formulations. The noiseless
part of the received signal in (10) can be identified as the k-th
frontal slice of a third-order tensor Y ∈ CL×M×K that follows
the following PARAFAC decomposition [35]

Y = I3,N ×1 G×2 H×3 S̄. (15)

Here, I3,N represents a third-order identity tensor of size N×
N × N . According to (15), the factor matrices related to 1-
mode, 2-mode and 3-mode of Y are respectively G ∈ CL×N ,
H ∈ CM×N and S̄ = [s̄ [1] , . . . , s̄ [K]]

T ∈ CK×N , where
s̄ [k] = e⊙ s [k] or, equivalently, in matrix notation Dk

(
S̄
)
=

diag (e)Dk (S), ∀k = 1, . . . ,K.

Resorting to the multilinear structure of the PARAFAC
decomposition in (15), higher degrees of freedom for signal
processing can be achieved by exploiting the dimensions of
interest of the received signal tensor. In this sense, Y can
also be expressed with respect to its 1-mode and 2-mode
unfoldings, which can be expressed as

[Y](1) = Gdiag (e) (S ⋄H)
T ∈ CL×MK , and

[Y](2) = Hdiag (e) (S ⋄G)
T ∈ CM×LK ,

(16)

where [Y](1) ∈ CL×MK and [Y](2) ∈ CM×LK are obtained
from (10) by stacking the frontal slices into wide matrices, as
defined by

[Y](1) = [Y [1] , . . . ,Y [K]] , and

[Y](2) =
[
YT [1] , . . . ,YT [K]

]
.

(17)

Additionally, [Y](1) can also be represented in a convenient
vectorized form. By applying the property (2) to [Y](1) we
obtain

vec
(
[Y](1)

)
= (S ⋄H ⋄G) e ∈ CLMK×1. (18)

In the following, we describe an iterative way to estimate H
and G for the RIS-assisted MIMO system with RIS operating
under LTI. Let us define Ỹ = Y+V as the noisy version of the
received signal tensor Y , where V denotes the additive noise
tensor, the entries of which are modeled as zero-mean unit
variance complex Gaussian random variables. The estimation
problem can be formulated as follows

min
G,H,e

∥∥∥Ỹ − I3,N ×1 G×2 H×3 S̄.
∥∥∥2

F
. (19)

This problem can be solved efficiently by means of the ALS
algorithm [35], [43], which is a well-known iterative method
for estimating the factor matrices of a tensor model thanks
to its implementation simplicity and monotonic convergence
property in which the update of every given matrix at each
iteration may either improve or maintain but cannot worsen the
current fit, leading usually to global minimum solution [44],
[45]. The decoupled estimates of G, H and e can be obtained
by converting the trilinear fitting problem in (19) into the
following three simplest linear LS sub-problems formulated
from (16) and (18), respectively

Ĝ = argmin
G|e,H

∥∥∥[Ỹ](1) −Gdiag (e) (S ⋄H)
T
∥∥∥2

F
, (20)

Ĥ = argmin
H|e,G

∥∥∥[Ỹ](2) −Hdiag (e) (S ⋄G)
T
∥∥∥2

F
, (21)

ê = argmin
e|H,G

∥∥∥vec
(
[Ỹ](3)

)
− (S ⋄H ⋄G) e

∥∥∥2
F
. (22)

According to (20), the conditional LS update for Ĝ is given
by

Ĝ = [Ỹ](1)

[
diag (e) (S ⋄H)

T
]†

. (23)

Similarly, according to (21) and (22), the conditional LS
updates for Ĥ and ê are respectively given by

Ĥ = [Ỹ](2)

[
diag (e) (S ⋄G)

T
]†

, (24)

ê = (S ⋄H ⋄G)
† vec

(
[Ỹ](1)

)
. (25)
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Algorithm 1: TALS-LTI Algorithm
1. Set i = 0;

Keep S fixed; Initialize randomly the matrix Ĥ(i=0)

and the imperfections vector ê(i=0);
2. i← i+ 1;
3. Using (23), obtain an LS estimate of Ĝ(i):

Ĝ(i) = [Ỹ](1)
[

diag
(
ê(i−1)

) (
S ⋄ Ĥ(i−1)

)T
]†

;

4. Using (24), obtain an LS estimate of Ĥ(i):

Ĥ(i) = [Ỹ](2)
[

diag
(
ê(i−1)

) (
S ⋄ Ĝ(i)

)T
]†

;

5. Using (25), obtain an LS estimate of ê(i):

ê(i) =
(
S ⋄ Ĥ(i) ⋄ Ĝ(i)

)†
vec

(
[Ỹ](3)

)
;

6. Compute the error ϵ(i) = ∥[Ỹ](1) − ˆ[Y](1)(i)∥
2
F

where ˆ[Y](1)(i) = Ĝ(i)diag
(
ê(i)

) (
S ⋄ Ĥ(i)

)T
;

7. Repeat Steps 2-6 until |ϵ(i) − ϵ(i−1)| ≤ δ.

The proposed TALS-STI algorithm consists of three iterative
and alternating update steps formulated from the LS solutions
in (23), (24) and (25). At each step, the fitting error is
minimized with respect to one given factor matrix by fixing
the other matrices to their values obtained at previous updating
steps. This procedure is repeated until the convergence of the
algorithm at the i-th iteration determined by the designer. Let
define

ˆ[Y](1)(i) = Ĝ(i)diag
(
ê(i)

) (
S ⋄ Ĥ(i)

)T
∈ CL×MK , (26)

as the reconstructed tensor obtained from the estimates of
Ĝ(i), Ĥ(i), and ê(i), and the residual error as ϵ(i) =∥∥∥[Ỹ](1) − ˆ[Y](1)(i)

∥∥∥2
F
, computed at the end of the i-th iter-

ation. The convergence of the algorithm is declared when
|ϵ(i) − ϵ(i−1)| ≤ δ, with δ being a constant considered by
the designer, meaning that the reconstruction error does not
significantly change between two successive iterations. In
this work, we set δ = 10−6 as a convergence threshold.
The implementation steps of the proposed iterative TALS-
LTI algorithm are summarized in the pseudocode shown in
Algorithm 1. For the complexity analysis of Algorithm 1, see
Section IV.

B. TALS Algorithm for RIS under STI (TALS-STI)

In order to derive proposed channel estimators for a scenario
with STI, let us first establish a link between the received
signal in (14) and the PARAFAC decomposition. According
to [35], the noiseless signal part of (14) expresses the (p, k)-th
frontal slice of a fourth-order tensor Y ∈ CL×M×K×P that
follows the PARAFAC decomposition

Y = I4,N ×1 G×2 H×3 S×4 E. (27)

Here, I4,N denotes the fourth-order identity tensor of size N×
N×N×N , while G, H, S and E are the 1,2,3,4-mode factor
matrices of the decomposition, respectively.

By stacking column-wise the noiseless received signal in
(14) for the K time-blocks at frame p as the matrix Yp =
[Y [p, 1] , . . . ,Y [p,K]] ∈ CL×MK , we have

Yp = GDp (E)
[
D1 (S)H

T, . . . ,DK (S)HT] , (28)

∀p = 1, . . . , P . Applying the property (1) to the right-hand
side of (28), a more compact form is obtained as

Yp = GDp (E) (S ⋄H)
T ∈ CL×MK . (29)

From (29), we can define the new column-wise collection
[Y](1) = [Y1, . . . ,YP ] ∈ CL×MKP as the 1-mode matrix
unfolding of the received signal tensor Y ∈ CL×M×K×P in
(27), which is given by

[Y](1) = G
[
D1 (E) (S ⋄H)

T
, . . . ,DP (E) (S ⋄H)

T
]
.

(30)
By applying property (1) to the right-hand side of (30), we
finally obtain

[Y](1) = G (E ⋄ S ⋄H)
T ∈ CL×MKP . (31)

Additionally, for our purpose, we also need to define the
2-mode, 3-mode and 4-mode matrix unfoldings of the fourth-
order received signal tensor Y ∈ CL×M×K×P since they will
be exploited to formulate our second set of CE algorithms
in the sequel. The remaining unfoldings can be deduced
using a similar procedure by permuting the factor matrices
in (14). This leads to the following factorizations to the other
unfoldings

[Y](2) = H (E ⋄ S ⋄G)
T ∈ CM×LKP , (32)

[Y](3) = S (E ⋄H ⋄G)
T ∈ CK×LMP , (33)

[Y](4) = E (S ⋄H ⋄G)
T ∈ CP×LMK . (34)

In the following, we show that the channel matrices H and
G can be also estimated when STI model is assumed. To this
end, we propose to minimize the following quadrilinear LS
fitting problem problem

min
G,H,E

∥∥∥Ỹ − I4,N ×1 G×2 H×3 S×4 E
∥∥∥2

F
, (35)

where Ỹ = Y + V as the noisy version of the received
signal tensor Y . Similar to the TALS-LTI algorithm, we
also propose to solve this optimization problem by means
of the ALS algorithm. Since the matrix S is known at the
receiver, the quadrilinear fitting problem in (35) is simplified to
a trilinear fitting problem that reduces to iteratively minimize
the following linear LS sub-problems formulated from (31),
(32) and (34), respectively

Ĝ = argmin
G|E,H

∥∥∥[Ỹ](1) −G (E ⋄ S ⋄H)
T
∥∥∥2

F
, (36)

Ĥ = argmin
H|E,G

∥∥∥[Ỹ](2) −H (E ⋄ S ⋄G)
T
∥∥∥2

F
, (37)

Ê = argmin
E|H,G

∥∥∥[Ỹ](4) −E (S ⋄H ⋄G)
T
∥∥∥2

F
. (38)
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Algorithm 2: TALS-STI Algorithm
1. Set i = 0;

Keep S fixed;
Initialize randomly the matrices Ĥ(i=0) and Ê(i=0);

2. i← i+ 1;
3. Using (39), obtain an LS estimate of Ĝ(i):

Ĝ(i) = [Ỹ](1)
[(

Ê(i−1) ⋄ S ⋄ Ĥ(i−1)

)T
]†

;

4. Using (40), obtain an LS estimate of Ĥ(i):

Ĥ(i) = [Ỹ](2)
[(

Ê(i−1) ⋄ S ⋄ Ĝ(i)

)T
]†

;

5. Using (41), obtain an LS estimate of Ê(i):

Ê(i) = [Ỹ](4)
[(

S ⋄ Ĥ(i) ⋄ Ĝ(i)

)T
]†

;

6. Calculate the residual error ϵ(i) = ∥[Ỹ](1) − ˆ[Y](1)(i)∥
2
F

where ˆ[Y](1)(i) = Ĝ(i)

(
Ê(i) ⋄ S ⋄ Ĥ(i)

)T
;

7. Repeat Steps 2-6 until |ϵ(i) − ϵ(i−1)| ≤ δ.

It follows from (36), (37), and (38) that the conditional LS
updates of Ĝ, Ĥ, and Ê are given by

Ĝ = [Ỹ](1)

[
(E ⋄ S ⋄H)

T
]†

, (39)

Ĥ = [Ỹ](2)

[
(E ⋄ S ⋄G)

T
]†

, (40)

Ê = [Ỹ](4)

[
(S ⋄H ⋄G)

T
]†

, (41)

respectively. In the same way as in Algorithm 1, the updates
of Ĝ, Ĥ, and Ê are obtained by iteratively performing (39),
(40) and (41) until the convergence. The proposed iterative
TALS-STI algorithm is detailed in the pseudocode shown in
Algorithm 2. For the complexity analysis of Algorithm 2, see
Section IV.

Remark 2: In the application context of this work, the
non-impaired RIS activation pattern matrix S is assumed to
be known at the receiver as indicated in the first step of
Algorithms 1-2, respectively. This is a feasible assumption in
accordance with the CE protocol shown in Fig. 2. Among
different design possibilities, we set S as a semi-unitary
matrix satisfying SHS = KIN . According to [33], a good
choice is to consider S as a deterministic truncated discrete
Fourier transform (DFT) matrix. This choice guarantees a good
performance of the proposed algorithms since the correlation
properties of the additive noise are not affected during the
estimation processing. More details on the optimal design of
S are found in [46]. Moreover, despite the iterative nature
of the proposed TALS-LTI and TALS-STI algorithms, the
convergence to the global minimum is always achieved within
a few iterations (usually less than 80 iterations as verified in
our simulation results) due to the knowledge of S that remains
fixed during the iterations.

C. HOSVD Algorithm for RIS under STI (HOSVD-STI)

We now derive a closed-form solution based on higher
order singular value decomposition (HOSVD) for CE under

the STI model. According to (33), the transpose of the 3-mode
unfolding of Y is denoted by

[Ỹ]T(3) = (E ⋄H ⋄G)ST. (42)

The first processing step at the receiver is to apply a bilinear
time-domain matched-filtering by multiplying both sides in
(42) by the pseudo-inverse of ST, resulting in

Ỹ ≈ E ⋄H ⋄G ∈ CLMP×N , (43)

where Ỹ = [Ỹ]T(3)
(
ST

)†
. From (43), decoupled estimates of

the channel matrices and RIS imperfections can be obtained
by separating each factor matrix in the Khatri-Rao product. In
this sense, the estimates can be obtained by minimizing the
following cost function

min
G,H,E

∥∥∥Ỹ −E ⋄H ⋄G
∥∥∥2

F
. (44)

Here, we propose to solve this problem by means of multiple
rank-one tensor approximations via the HOSVD [36]. To this
end, let us define Ỹ = [ỹ1, . . . , ỹN ] ∈ CLMP×N where the
n-th column of Ỹ can be written as ỹn = en ⊗ hn ⊗ gn ∈
CLMP×1, where en ∈ CP×1, hn ∈ CM×1, and gn ∈ CL×1

are the n-th column of E, H, and G, respectively. Using the
equivalence property in (3) that relates the Kronecker product
to the outer product, we can rewrite ỹn as

ỹn = vec (gn ◦ hn ◦ en) ∈ CLMP×1. (45)

that represents the vectorized form of the following third-order
rank-one tensor

Ỹn = gn ◦ hn ◦ en ∈ CL×M×P . (46)

Thus, the optimization problem in (44) is equivalent to finding
the estimates of H, G and E that minimize a set of N rank-
one tensor approximations, i.e,(

Ĝ, Ĥ, Ê
)
= argmin

G,H,E

N∑
n=1

∥∥∥Ỹn − gn ◦ hn ◦ en
∥∥∥2

F
. (47)

Let us introduce the HOSVD of Ỹn as

Ỹn = Gn ×1 U
(1)
n ×2 U

(2)
n ×3 U

(3)
n ∈ CL×M×P , (48)

where U
(1)
n ∈ CL×L, U(2)

n ∈ CM×M , and U
(3)
n ∈ CP×P are

unitary matrices, while Gn ∈ CL×M×P denotes the HOSVD
core tensor. The estimates of the vectors gn, hn and en that
solve the LS problem in (47) can be obtained by truncating the
HOSVD of Ỹn to its dominant rank-one component, yielding

ĝn = 3

√
(Gn)1,1,1 · u

(1)
1,n ,

ĥn = 3

√
(Gn)1,1,1 · u

(2)
1,n ,

ên = 3

√
(Gn)1,1,1 · u

(3)
1,n ,

(49)

where u
(1)
1,n ∈ CL×1, u(2)

1,n ∈ CM×1, and u
(3)
1,n ∈ CP×1 are

the first higher-order singular vectors, i.e., the first column
of U

(1)
n , U(2)

n , and U
(3)
n , respectively. Here, (Gn)1,1,1 is the

first element of the core tensor Gn. The estimates of Ĝ,
Ĥ, and Ê are obtained column by column from (49) for
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Algorithm 3: HOSVD-STI Algorithm
for n = 1, . . . , N
1. Rearrange the n-th column of Ỹ in Equation (43) as the
rank-one tensor Ỹn in Equation (46);
2. HOSVD procedure

2.1 Compute U
(1)
n as the L left singular vectors of [Ỹn](1):

[Ỹn](1) = U
(1)
n ·Σ(1)

n ·V(1)H
n ;

2.2 Compute U
(2)
n as the M left singular vectors of [Ỹn](2):

[Ỹn](2) = U
(2)
n ·Σ(2)

n ·V(2)H
n ;

2.3 Compute U
(3)
n as the P left singular vectors of [Ỹn](3):

[Ỹn](3) = U
(3)
n ·Σ(3)

n ·V(3)H
n ;

2.4 Compute the HOSVD core tensor Gn as:
Gn = Ỹn ×1 U

(1)H
n ×2 U

(2)H
n ×3 U

(3)H
n ;

end procedure
3. Obtain the estimates for ĝn, ĥn and ên from Equations (49);
end
4. Return the matrices Ĝ = [ĝ1, . . . , ĝN ], Ĥ =

[
ĥ1, . . . , ĥN

]
and Ê = [ê1, . . . , êN ].

the N columns of Ỹ in (43). In other words, a total of N
rank-one tensor approximations via HOSVD are necessary to
obtain the full estimates of the matrices Ĝ = [ĝ1, . . . , ĝN ],
Ĥ =

[
ĥ1, . . . , ĥN

]
and Ê = [ê1, . . . , êN ] in a closed-form

manner. The implementation steps of the proposed closed-form
HOSVD-STI algorithm are summarized in Algorithm 3. For
the complexity analysis of Algorithm 3, see Section IV.

D. Handling frames with different sizes

For notation convenience and simplicity, we have considered
frames with equal size, i.e., with the same number K of
blocks. However, the proposed method can be easily adapted
to processing frames with different sizes. Considering the STI
model, let us assume that the p-th frame is composed of
Kp blocks and denote Sp = [s[1], . . . , s[Kp]]

T ∈ CKp×N as
the RIS phase shift matrix associated with the p-th frame,
p = 1, . . . , P . We can rewrite (14) as

Y [p, kp] = GDp (E)Dkp
(Sp)H

T +V [p, kp] . (50)

Applying the vec(·) operator on Y [p, kp] yields

y [p, kp] = (H ⋄G) (e[p]⊙ s[kp]) + v [p, kp] ∈ CLM×1,

where v [p, kp] = vec(V [p, kp]). Concatenating the Kp blocks
of the p-frame leads to

Yp = [y [p, 1] , . . . ,y [p,Kp]] ∈ CLM×KP

= (H ⋄G) [(e[p]⊙ s[1]) , . . . , (e[p]⊙ s[Kp])] +V [p]

= (H ⋄G)Dp (E)ST
p +V [p] , (51)

where V [p] = [v[p, 1], . . . ,v[p,Kp]]. Since the nominal RIS
phase shift matrix is known at the receiver, right-filtering the
received signal at the p-th frame yields

Ȳp = Yp(S
T
p)

† ∈ CLM×N (52)

≈ (H ⋄G)Dp (E) , p = 1, . . . , P. (53)

Stacking the filtered signals for all P frames and using
property (1), we obtain

Ȳ =

 Ȳ1

...
ȲP

 ≈ E ⋄H ⋄G ∈ CLMP×N . (54)

Note that (54) has the same structure as (43). Hence, the factor
matrices E, H and G can be estimated by following exactly
the same steps given in (44)-(49) by means of the HOSVD
algorithm (Algorithm 3).

IV. IDENTIFIABILITY AND COMPUTATIONAL COMPLEXITY

In this section, we examine the identifiability aspects and the
computational complexity associated with the proposed tensor-
based TALS-LTI, TALS-STI, and HOSVD-STI algorithms3.
1) TALS-LTI algorithm: The uniqueness of the LS estimates
of Ĝ, Ĥ, and ê requires that diag (e) (S ⋄H)

T ∈ CN×KM ,
diag (e) (S ⋄G)

T ∈ CN×KL and (S ⋄H ⋄G) ∈ CKLM×N

are full row-rank. This means that the conditions N ≤ KM ,
N ≤ KL, and N ≤ KLM should be jointly satisfied. By
combining these necessary and sufficient conditions, we obtain
the lower bound on the number K of time blocks necessary
for CE such that Steps 3, 4, and 5 in Algorithm 1 yield a
unique solution: K ≥ ⌈N/min (L,M)⌉.
2) TALS-STI algorithm: We can note from (39), (40), and (41)
that unique estimates of Ĝ, Ĥ, and Ê in the LS sense requires
that (E ⋄ S ⋄H)

T ∈ CN×KMP , (E ⋄ S ⋄G)
T ∈ CN×KLP ,

and (S ⋄H ⋄G)
T ∈ CN×KLM are full row-rank to be right-

invertible. This means the conditions N ≤ KMP , N ≤
KLP , and N ≤ KLM should be satisfied. The combination
of these inequalities leads to the following necessary and
sufficient condition to be satisfied: K ≥ ⌈N/min (MP,LP,LM)⌉.
This condition establishes the lower-bound on the required
number of time-blocks K such that Steps 3, 4, and 5 in
Algorithm 2 provide unique solutions when STI are assumed.
3) HOSVD-STI algorithm: In contrast to the iterative TALS-
LTI and TALS-STI algorithms in which three LS conditions
must be jointly satisfied, the proposed HOSVD-STI algorithm
is a closed-form solution requiring only that the RIS activation
pattern matrix S ∈ CK×N has full column-rank in order to
guarantee the uniqueness in the LS sense when the bilinear
time-domain matched-filtering preprocessing is performed at
the receiver side, as indicated in (43). This means that K ≥ N
should be satisfied.

4) Computational complexity: As can be observed in Al-
gorithms 1-2, the computational complexity of the proposed
TALS-LTI and TALS-STI algorithms are dominated by the
cost associated with the computation of the matrix pseudo-
inverses in three LS update steps that calculate the esti-
mates of the channels and imperfection matrices in an it-
erative and alternating way. Therefore, the computational
complexity of the TALS-LTI and TALS-STI algorithms are
O
(
N2K[M + L+ML]

)
and O

(
N2K[PM + PL+ML]

)
3Since S is known at the receiver, the estimated factor matrices Ĝ, Ĥ and

Ê do not suffer from column permutation ambiguity. The scaling ambiguity
affecting the columns of the estimated matrices can be eliminated with a
simple normalization procedure, as performed in [47] and [33].
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per iteration, respectively. Regarding the proposed HOSVD-
STI in Algorithm 3, its computational complexity is dominated
by the HOSVD of the third-order rank-one tensor in (46),
which is equivalent to computing the truncated SVDs of its
1-mode, 2-mode, and 3-mode unfolding matrices to rank-
one. These truncated SVDs are repeated N times. Therefore,
the HOSVD-STI algorithm has a complexity O (NMLP ),
which is clearly less than that of the TALS-LTI and TALS-
STI algorithms. In particular, as opposed to Algorithms 1-2,
where the computational complexity is proportional to N2,
in Algorithm 3 the complexity scales with the RIS size N
linearly. As a result, compared to Algorithms 1-2, the relative
gain of Algorithm 3, in terms of complexity, increases rapidly
as the number of RIS elements increases.

To summarize, we can note that the TALS-STI algorithm
has less restrictive requirements on the minimum number K
of time blocks necessary for the CE. On the other hand, the
HOSVD-STI algorithm involves computing N rank-one tensor
approximation steps via the HOSVD on the post-filtered signal
according to (47). These steps can be parallelized if more than
one processor is available, leading to a considerable reduction
in the processing delay associated with CE, in comparison to
the TALS-STI algorithm, while being a less complex solution.
Hence, we can conclude that the TALS-STI algorithm offers
more flexibility on the choices of K, being able to operate
with a smaller number of blocks compared to the HOSVD-
STI, while the latter is more attractive in scenarios with low
latency requirements. Moreover, the computational complexity
of the HOSVD-STI scales linearly with the RIS size N while
that of TALS increases proportionally to N2. Hence, there is
a tradeoff between computational complexity and operation
conditions offered by the proposed tensor-based algorithms.

V. SIMULATION RESULTS

In this section, we present the results for different parame-
ters to study the proposed schemes from different perspectives.
Specifically, we present the simulation results for performance
evaluation of our proposed tensor-based algorithms in terms
of computational complexity and estimation accuracy of the
involved channels and imperfections while comparing with
benchmark approaches. The results presented here are aver-
aged over R= 3000 independent Monte Carlo runs. Each run
corresponds to a different realization of the involved com-
munication channels, RIS patterns, impairment parameters,
and noise. We have designed the RIS pattern matrix S as a
DFT matrix. The amplitude and phase impairments parameters
embedded in the vector e and in the matrix E follow a uniform
distribution between [0, 1] and between [0, 2π], respectively.
The location of the unknown NB impaired elements are as-
sumed to be random with occurrence probability RB , yielding
NB = NRB impaired elements at the RIS in each simulated
setup. The metric used to evaluate the estimation accuracy is
the normalized mean square error (NMSE) between the true
and estimated matrices that provides a relative measure for the
estimation error of the proposed algorithms. For the estimated

channel Ĥ, we define

NMSE(Ĥ) =
1

R

R∑
r=1

∥H(r) − Ĥ(r)∥2F
∥H(r)∥2F

, (55)

where H(r) and Ĥ(r) denote the true channel and its estimate
both related to the r-th run, respectively. Similar definitions
as in (55) apply to the estimates of Ĝ, Ê and ê. Finally,
note that while we present the simulation results for a set
of parameter settings, we have tested the results for a broad
range of parameter settings and observed the same qualitative
conclusions as those presented.

For simulation purposes, we assume that one row of each
factor matrix, i.e., G, H, E is known at the receiver in order
to remove the scaling ambiguity present on the proposed
methods. However, note that in the practical use of the
estimated matrices, the scaling ambiguities of Ĝ, Ĥ, and Ê,
cancel each other, not affecting, for example, a data detection
procedure [24], [48]. More specifically, after the TALS and
HOSVD algorithms, the estimated factors are related to the
true ones with the following relationships:

Ĝ=Gdiag
(
λ(G)

)
, Ĥ=Hdiag

(
λ(H)

)
, Ê=Ediag

(
λ(E)

)
,

where λ(X) = [λ
(X)
1 , . . . , λ

(X)
1 ]T ∈ CN×1, for X = {G,H,E},

is the vector containing the scaling factors of the estimated
matrices, with diag

(
λ(G)

)
diag

(
λ(H)

)
diag

(
λ(E)

)
≈ IN (is

equal on the ideal noiseless case). Consequently, in order to
remove the effect of λ(X), the receiver should have the a priori
knowledge of one row of each factor matrix. Assuming as
known the first row of G, H, E, the scaling factor can be
estimated as

λ(G) = Ĝ(1,:) ⊘G(1,:), λ(H) = Ĥ(1,:) ⊘H(1,:),

λ(E) = Ê(1,:) ⊘E(1,:),

where “⊘" stands for element-wise division.

A. TALS-LTI Performance

We first examine, in Figs. 4 and 5, the performance of the
proposed TALS-LTI algorithm. These plots show the NMSE
and computational complexity in terms of floating-point op-
erations (FLOPS) assuming i.i.d. Rayleigh fading channels.
As a benchmark, we compare our TALS-LTI algorithm with
the method proposed in [24], which is also a PARAFAC-
based algorithm but formulated to the ideal case in which
no impairments affect the RIS elements. Additionally, as a
lower-bound for comparison, we also plot the performance of
the clairvoyant LS estimators of Ĥ, Ĝ and ê in (23), (24) and
(25) obtained when the true factor matrices in the right-hand
side of these equations are perfectly known.

From Figs. 4a and 4b, we can observe that the method
in [24] is not suitable to tackle the CE problem when RIS
impairments are present. In contrast, our proposed TALS-LTI
algorithm provides accurate estimates in which the NMSE
of the estimated channels decreases linearly when the SNR
increases, and is not sensitive to the number of impaired
elements at the RIS. For instance, the TALS-LTI presents
constant gaps when compared to the lower-bound LS estimator
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Fig. 4: NMSE performance of TALS-LTI versus SNR (dB).

equal to 4 dB and 3 dB, providing satisfactory performance in
terms of the CE for all simulated SNR range. Also, in contrast
to the method in [24], the TALS-LTI accurately estimates
the RIS impairments that are treated as independent variables
estimated beyond the involved channels, as illustrated in Fig.
4c.

In terms of computational complexity, we can see from
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Fig. 5: Number of FLOPS required by the TALS-LTI algorithm
versus the number of the RIS elements.

Fig. 5 that the TALS-LTI has a higher complexity than the
competitor method requiring approximately 2.2x more FLOPS
per iteration. This happens because the TALS-LTI has one
more updating step (per iteration) to estimate the RIS imper-
fections compared to the method in [24] that does not perform
the estimation of imperfections. Also, the complexity of both
approaches increases with the number N of RIS elements and
the number K of time blocks.

B. TALS-STI and HOSVD-STI Performance

Here, we evaluate the performance of the proposed TALS-
STI and HOSVD-STI algorithms assuming i.i.d. Rayleigh fad-
ing channels and a typical mmWave propagation environment.
For the mmWave setup, we assume that the transmitter and
the receiver are equipped with half-wavelength spaced uniform
linear arrays while the RIS has half-wavelength spaced reflect-
ing elements in a uniform rectangular grid. In this case, the
channel matrices are generated according to the widely used
geometric channel model [49]. The number of propagation
paths is set to 1 in the Tx-RIS link and to 2 in the RIS-Rx
link, respectively. The complex channel gains follow uniform
distributions. The lower-bound LS estimators of Ĥ, Ĝ and Ê
are obtained similarly to Section V-A, but now from (39), (40)
and (41), respectively.

From Fig. 6, similar conclusions to the results in Fig. 4,
in terms of CE performance, can be made by comparing the
proposed TALS-STI and HOSVD-STI algorithms with the
method in [24]. However, more accurate estimates for the
channels and impairments are obtained when the mmWave
propagation scenario is considered. In this experiment, the
TALS-STI and HOSVD-STI present, respectively, constant
gaps of approximately 1 dB and 2 dB, compared to the
lower-bound LS estimator for the considered range of SNR,
confirming the effectiveness of the proposed tensor-based
algorithms in terms of estimation accuracy. Similar results are
obtained for the proposed TALS-LTI algorithm but omitted
here due to space limitation. Also, we see from Fig. 6c that
in the low/medium SNR regime, the TALS-STI algorithm
outperforms the HOSVD-STI one in terms of imperfections
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Fig. 6: NMSE performance of the TALS-STI and HOSVD-STI
algorithms versus the SNR (dB) for M = 3 transmit antennas, L = 2
receive antennas, N = 50 elements with {10, 5} elements placed on
the {x,y}-axes RIS elements.

estimation, indicating that the TALS-STI algorithm becomes
preferable with a considerable gain in the low SNR regime
when complexity issues are not taken into account. The
tradeoff between computational complexity and estimation
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Fig. 7: Number of FLOPS required by the TALS-STI and
HOSVD-STI algorithms versus the number of RIS elements.
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Fig. 8: Number of iterations required by the TALS-STI algorithm
versus SNR (dB).

performance is analyzed in the sequel. The presented result in-
dicates that the proposed algorithms are able to work with high
accuracy under different propagation environments and kinds
of imperfections, i.e., our approaches are general techniques
that provide accurate estimates for different channel models.

In Fig. 7, we evaluate the computational complexity (in
terms of FLOPS) of the TALS-STI and HOSVD-STI algo-
rithms. We can see that the HOSVD-STI is less complex than
TALS-STI for different values of RIS elements N and frames
P since it is a closed-form solution for joint channel and im-
perfections estimation. The HOSVD-STI algorithm provides a
remarkable gain of the order of NK FLOPS compared to
the TALS-STI one. It can be seen that the complexity of
both methods grows when the number of RIS elements N
and frames P increases, which is an expected result since
the number of entries in H, G, and E also increases with
N and P . However, in contrast to the HOSVD-STI, which
is a closed-form solution, for a complete analysis of the
overall complexity of the proposed techniques, Fig. 8 shows
the number of iterations necessary for the convergence of the
TALS-STI algorithm considering different values of N and P .
It can be seen that the TALS-STI algorithm rapidly converges



12

0 5 10 15 20 25 30
10

-2

10
-1

10
0

Fig. 9: Average runtime (in seconds) for the TALS-STI and HOSVD-
STI algorithms versus the SNR (dB).

due the knowledge of the matrix S. Also, the number of
iterations required for the convergence decreases as a function
of the SNR. In the high SNR regime, the convergence of
the proposed TALS-STI algorithm is no more sensitive to N ,
P , and SNR values. When the SNR is higher than 20 dB,
its convergence is quickly achieved within approximately 5
iterations.

In Fig. 9, we evaluate the overall computational complexity
of the TALS-STI and HOSVD-STI algorithms using as a
metric the average runtime (in seconds). This metric considers
the number of iterations for convergence, making it possible
to compare the complexity between iterative and closed-form
solutions. It can be seen that the runtime grows when the
number N of RIS elements increases, confirming the results
shown in Fig. 7. The runtime required by HOSVD-STI is not
sensitive to the SNR since it is a closed-form algorithm. On
the other hand, the runtime of the TALS-STI algorithm de-
creases with the SNR as it is an iterative algorithm, achieving
performance close to HOSVD-STI algorithm in the high SNR
regime thanks to its rapid convergence (Fig. 8).

We can conclude that TALS-STI and HOSVD-STI algo-
rithms outperform the method in [24] in terms of both CE
accuracy and overall computational complexity. Due to the
RIS imperfections, the method in [24] does not estimate chan-
nels properly and has very slow convergence which directly
increases its runtime. However, the TALS-STI can operate
under more flexible choices for the number K of time-blocks
for CE compared to HOSVD-STI (see Fig. 10). In Fig. 10,
we compare the NMSE by varying the number N of RIS
elements and observe that for K = 50 blocks and N > 50
elements, the condition K ≥ N required by the HOSVD-
STI is not satisfied (please see Section IV), which leads to
significant performance degradation. In this case, the TALS-
STI algorithm is the preferred solution in terms of estimation
accuracy. Therefore, a tradeoff between overall computational
complexity, estimation performance, and operation conditions
for the proposed solutions can be observed. Thus, the TALS-
STI may be attractive when more flexible choices for the
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Fig. 10: NMSE performance of the TALS-STI and HOSVD-STI
algorithms versus the number of RIS elements.

number K of time-blocks for CE are required, while the
HOSVD-STI is preferred, especially when low processing
delay is desired. We can also observe that when N increases,
the CE performance degrades. This is a coherent result since
the channel components and imperfections coefficients to be
estimated also grow.
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Fig. 11: NMSE performance of the TALS-STI and HOSVD-STI
algorithms versus the impairments occurrence probability RB .

In Fig. 11, we evaluate the NMSE as a function of the
impairments occurrence probability RB . It can be seen that,
in terms of CE accuracy, for a broad range of parameter
settings, our proposed methods are not sensitive to the number
of impaired elements at the RIS. This is because the imperfec-
tions matrix is estimated as an independent variable by both

methods. In terms of imperfections accuracy estimation, both
proposed algorithms, TALS-STI and HOSVD-STI, show the
same performance in the considered scenario. Note that the
proposed TALS-STI and HOSVD-STI algorithms outperform
the method in [24], even when an ideal non-impaired RIS
is assumed. However, the gains achieved by our methods
become more evident in the challenging scenario where the
number of impaired elements at the RIS increases. In this
case, the method of [24] is sensitive to RB . Thus, if the
number of impaired RIS elements changes, the method of
[24] does not show a stable/predictable performance. This
leads to the need for CE correction and retransmissions.
In contrast, our proposed methods are quite robust to RB

variation, simplifying the system design.

VI. CONCLUSION

We have proposed different efficient tensor-based algorithms
for CE in RIS-assisted MIMO systems, in which the RIS
elements are affected by real-world imperfections. We resort
to the multidimensional structure of the received signal to
solve these non-idealized CE problems by means of trilinear
and quadrilinear PARAFAC models. The proposed TALS-LTI
algorithm solves the problem when static imperfections are
assumed. As a generalization, we have formulated the TALS-
STI and HOSVD-STI algorithms for the more challenging
scenario in which the behavior of the RIS imperfections is
non-static with respect to channel coherence time. The TALS-
LTI and TALS-STI algorithms are iterative solutions that relax
the system design requirements, operating under more flexible
choices for the training parameters. In contrast, the HOSVD-
STI algorithm is a closed-form solution having a lower
computational complexity compared to the competing ALS-
based solutions while enjoying parallel processing. Numerical
results illustrate the remarkable performance of the proposed
tensor-based algorithms for different kinds of imperfections,
channel models, and system configurations. The TALS-STI
and HOSVD-STI algorithms present similar CE performances.
However, the TALS-STI is preferable for the imperfections
detection in the low SNR regime and when more flexible
choices for training parameters is required, while the HOSVD-
STI is preferred when low processing delay is desired.
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