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and Martin Haardt, Fellow, IEEE

Abstract—In this paper, we introduce a Multilinear Generali-
zed Singular Value Decomposition (ML-GSVD) for two or more
matrices with one common dimension. The ML-GSVD extends
the Generalized Singular Value decomposition (GSVD) of two
matrices to higher orders. The proposed decomposition allows us
to jointly factorize a set of matrices with one common dimension.
In comparison with other approaches that extend the GSVD,
the ML-GSVD preserves the essential properties of the original
(matrix-based) GSVD, such as orthogonality of the second-mode
factor matrices as well as the subspace structure of the third-
mode factor matrices. We introduce an ALS-based algorithm to
compute the ML-GSVD, which has been inspired by PARAFAC2
decomposition algorithms. In addition, we present an application
of the ML-GSVD for transceiver optimization in multicast and
unicast MIMO-OFDM systems. Our numerical results show that
the proposed ML-GSVD multicast and unicast beamforming
outperforms existing state-of-the-art schemes in terms of the sum
rate.

Index Terms—Tensor decomposition, GSVD, ML-GSVD,
MIMO, coordinated beamforming, broadcasting.

I. INTRODUCTION

During the last decades, interest in tensor-based signal
processing methods has exponentially grown due to their
advantages over the conventional matrix-based methods. The
higher-order extensions of the matrix decompositions ena-
ble their generalization to multiway data processing. Tensor
techniques allow us to exploit the original structure of the
multidimensional data in many applications.

A lot of existing tensor decompositions generalize the
matrix decompositions. Despite the fact that there already
exist multidimensional extensions of the Generalized Singular
Value Decomposition (GSVD) in the literature, none of them
fully inherits the features of the original decomposition. On
the contrary, the Multilinear Generalized Singular Value De-
composition (ML-GSVD) that we have first presented in [1]
simplifies to the GSVD when performed on two matrices and
extends its properties to higher orders. The GSVD is useful
in various communication and biomedical applications, such

L. Khamidullina and M. Haardt are with Communication Research Lab-
oratory, Ilmenau University of Technology, Ilmenau, Germany, e-mails:
liana.khamidullina@tu-ilmenau.de, martin.haardt@tu-ilmenau.de.

A. L. F. de Almeida is with Wireless Telecommunications Research Group,
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as coordinated beamforming [2]–[4], MIMO relaying [5], [6],
physical layer security [7], [8], and genomic signal process-
ing [9]–[11]. In this paper, we present an extension of the
GSVD [12], [13] to factorize a three-way tensor. The proposed
ML-GSVD can be used for the joint analysis of a collection
of an arbitrary number (more than two) matrices with a
(possibly) varying number of rows and the same number
of columns. Thus, the ML-GSVD has the potential to be
employed in the current GSVD applications without being
limited to two matrices. We have already presented some initial
investigations on the ML-GSVD and its calculation in [1].
In this contribution, we introduce a more general definition
of the ML-GSVD which is applicable to a set of both full-
rank and rank-deficient matrices. Moreover, we specify the
corresponding optimization problem. Additionally, the paper
presents an enhanced algorithm to calculate the ML-GSVD
and its application to multiuser MIMO-OFDM systems with
multicast and unicast transmissions.

Before presenting the main differences and advantages of
the ML-GSVD over other GSVD extensions, let us first
give a brief overview of the existing generalizations of the
GSVD. Two different multidimensional decompositions that
extend the GSVD to the tensor case have been introduced
in [14] and [15]. The authors in [14] define the Higher
Order Generalized Singular Value Decomposition (HO GSVD)
as an exact decomposition of two or more full-rank real-
valued matrices that preserves some properties of the matrix-
based GSVD. However, it does not preserve the orthogonality
of the factor matrices as in the matrix GSVD. The HO
GSVD in [14] is used for a comparative analysis of the
global mRNA expression datasets from different organisms.
The ”common HO GSVD subspace” represents the similarity
in three different organisms. However, the definition of the
”common HO GSVD subspace” does not exactly match the
representation of the common and private subspaces in the
original GSVD. In contrast to the aforementioned paper, the
authors in [16] do not restrict their decomposition to full-
rank matrices and present additional steps that enable the
application of the HO GSVD to rank deficient third-mode
slices. In [15], the authors have presented a Tensor GSVD
to jointly decompose two tensors with the matched column
but independent row dimensions. The decomposition is then
used for DNA analysis. Both [14] and [15] consider real-
valued matrices in a biomedical data processing context. In
contrast to the HO GSVD and the Tensor GSVD, the ML-
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GSVD proposed in our work, inherits most of the properties of
the original GSVD and is applicable to both real and complex-
valued data, which paves the way for its use in many signal
processing applications, such as in wireless communications,
where the data tensors usually represent the communication
channel and/or the received signal in their equivalent complex-
valued baseband form.

Due to the fact that the ML-GSVD provides orthogonal
factor matrices for the individual slices, it is a valuable tool
for coordinated downlink beamforming in a wireless multiuser
MIMO system. More specifically, by applying the ML-GSVD
to a set of channel matrices (associated with different users),
we are able to identify common subspaces (CSs) to a group
of users, as well as private subspaces (PSs) to individual
users. Hence, by exploiting the structure of these subspaces,
broadcast and multicast transmission can be simultaneously
combined on the downlink for any number of users. In [5],
[6], and [7] the SVD-based beamforming has been generalized
to GSVD-based MIMO downlink beamforming. The authors
illustrate how the GSVD can be exploited for coordinated
beamforming in a multiuser MIMO system, but the approach
is limited to two users. The authors in [4] propose the GSVD
for polynomial matrices (PGSVD) and present its application
to two-user frequency-selective MIMO channels. In [17], [18]
the GSVD is combined with a non-orthogonal multiple access
(NOMA) scheme in a MIMO downlink scenario. The use
of the ML-GSVD allows us to go further by increasing
the number of users to be simultaneously served. In [1],
we show how the ML-GSVD can be used for coordinated
beamforming in a multiuser MIMO downlink channel with
more than two users. Moreover, in [19] we apply the ML-
GSVD to a NOMA communication system with an arbitrary
number of users. Depending on the number of transmit and
receive antennas (tensor dimensions), the subspace structure
of the ML-GSVD distinguishes between common and private
subspaces. Common subspaces are used to transmit the same
data to several users, while private subspaces allow sending
confidential messages to different users simultaneously. Hence,
the ML-GSVD enables handling an arbitrary number of users
that is less or equal than the number of transmit antennas in
the downlink of a coordinated MIMO beamforming system.

The authors in [20] consider a MIMO-OFDM multicas-
ting system and propose an SVD-based non-iterative linear
precoding scheme that allows sending common messages to
a group of users. Various multicast precoding methods have
also been studied in [21]–[30]. The authors in [31] use zero
forcing (ZF), minimum mean square error (MMSE), and
signal-to-interference-plus-noise ratio (SINR) balancing for
the multicast transmission. In contrast to [20], the approach
of [31] assumes a multigroup multicast scenario and a single-
carrier system with single antenna users.

Most of the proposed techniques in the literature are limited
to pure multicast or unicast transmission, but practical systems
are interested in joint services. This has motivated the study
of a joint unicast and multicast transmission. However, the
existing techniques have so far been limited to a simple system
with two users or multiple single-antenna users. None of the
aforementioned papers considers a joint multicast and unicast

precoding for a MIMO-OFDM system with multiple antenna
users. In our paper, we show that the ML-GSVD is a valuable
tool that allows combining broadcast and unicast transmis-
sions, which leads to an increased average spectral efficiency.
The main contributions of this paper can be summarized as
follows:
• We define a new extension of the GSVD [12], [13] to

factorize a three-way tensor. The proposed multilinear
generalized singular value decomposition (ML-GSVD)
can be used for the joint analysis of a collection of
more than two matrices with a varying number of rows
and the same number of columns. In contrast to other
GSVD extensions, the ML-GSVD inherits the properties
of the original matrix-based GSVD. Moreover, we do not
place any restrictions on the matrix ranks and consider
three different cases depending on the dimensions of the
decomposed matrices. We also show that in one of these
cases the decomposition is exact.

• A general ALS-based algorithm is introduced to compute
the proposed ML-GSVD decomposition. In particular,
we show that any algorithm to calculate the PARAFAC2
decomposition can be modified to compute the proposed
ML-GSVD.

• Since the ML-GSVD of two matrices with one common
dimension is exact and equal to the GSVD, the proposed
algorithm leads to an alternative way to calculate the
GSVD of two matrices.

• As one of the promising applications of the ML-GSVD,
we consider a MIMO-OFDM system with joint unicast
and multicast transmissions. We show that the factor
matrices of the ML-GSVD can be used as the precoding
and decoding matrices, respectively. We also demonstrate
that the aforementioned three cases of the decomposition
correspond to the transmission of private or common
messages (or both). The simulation results show that
the ML-GSVD outperforms the reference multicast and
unicast precoding schemes in terms of the sum rate.

This paper is organized as follows. In Section II, we review
the GSVD for two matrices. Then, we introduce the ML-
GSVD in Section III. Section IV presents an algorithm to
compute the ML-GSVD. The numerical results are shown in
Section V. In Section VI, we present an application of the
ML-GSVD to coordinated beamforming in multiuser MIMO-
OFDM systems. The paper is concluded in Section VII.

Notation. Matrices and vectors are denoted by upper-case
and lower-case bold-faced letters, respectively. Bold-faced cal-
ligraphic letters denote tensors. The superscripts {·}T and {·}H
denote the transpose and Hermitian transpose, respectively,
whereas diag{·} is the operation of constructing a diagonal
matrix with diagonal elements being the entries of the input
vector, while bdiag{·} is the operation of constructing a block
diagonal matrix with the input matrices on the main diagonal.
The j-th row and the i-th column of a matrix A ∈ CJ×I is
represented by A(j, :) ∈ CI and A(:, i) ∈ CJ , respectively,
where i = 1, . . . , I and j = 1, . . . , J . The Kronecker and
Khatri-Rao products are denoted as ⊗ and �, respectively.
Additionally, we denote the higher-order norm of a tensor A
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by ‖A‖H, the two-norm of a vector a by ‖a‖, and ‖A‖F
denotes the Frobenius norm. The r-mode unfolding of the
tensor A is denoted as [A](r) (we use the reverse cyclical
ordering of the columns [32]). Id denotes the d × d identity
matrix. 0x denotes the vector of zeros of size x and Ox

denotes the x × x matrix of zeros. {A}R(Q) and {A}C(Q)

denote the sub-matrices consisting of the columns and rows
of A with indices in the set Q ⊆ {1, . . . , I}, respectively.

II. GENERALIZED SINGULAR VALUE DECOMPOSITION

Before introducing the ML-GSVD, let us first review the
GSVD of two matrices proposed in [12], [13], and [33]. Let
H1 ∈ CJ1×I and H2 ∈ CJ2×I be two matrices having the
same number of columns, and an arbitrary number of rows J1
and J2. Then, the GSVD of H1 and H2 is defined as

H1 = B1 ·C1 ·AH,

H2 = B2 ·C2 ·AH,
(1)

where B1 ∈ CJ1×J1 and B2 ∈ CJ2×J2 have orthogonal
columns, A ∈ CI×I is nonsingular and common for both
matrices. Moreover, C1 ∈ RJ1×I and C2 ∈ RJ2×I are non-
negative diagonal matrices. The ratios of the corresponding
entries of C1 and C2 are called generalized singular values of
H1 and H2. Let q = rank([HH

1 HH
2 ]), r = q − rank(H2),

and s = rank(H1)+ rank(H2)− q, then, C1 and C2 have the
following structure

C1 =

O(J1−r−s)×(q−r−s)
Σ̂

Ir

 , (2)

C2 =

I(q−r−s) Λ̂
O(J2−q+r)×(r)

 , (3)

where Ir and I(q−r−s) are identity matrices,
O(J1−r−s)×(q−r−s) and O(J2−q+r)×(r) are zero matrices
possibly having no rows or no columns, Σ̂ = diag(σ1, . . . , σs),
Λ̂ = diag(λ1, . . . , λs) are diagonal matrices, such that
0 < σn < 1, 0 < λn < 1, and σ2

n+λ2n = 1 for n ∈ {1, . . . , s}.
There are some small variations in the representation of the
GSVD, for instance, in [13] it is assumed that J2 ≥ I .
However, most of the algorithms to calculate the GSVD
commonly consist of a sequential computation of the QR and
cosine-sine (CSD) decompositions. For more details on the
GSVD and its applications, we refer the reader to [12], [13],
and [34].

III. MULTILINEAR GENERALIZED SINGULAR VALUE
DECOMPOSITION (ML-GSVD)

We define the ML-GSVD for a set of K ≥ 2 complex va-
lued matrices1 Hk ∈ CJk×I with the same column dimension

1In general, the proposed decomposition is also applicable to real-valued
matrices. Since we further focus on an application in communications, we
consider the decomposition of complex-valued matrices in this paper.

. .≈

Fig. 1: Illustration of Multilinear Generalized Singular Value
Decomposition.

and possibly different row dimensions as follows

H1 =B1 ·C1 ·AH ∈ CJ1×I ,

...

HK =BK ·CK ·AH ∈ CJK×I .

(4)

The K matrices can be viewed as 3-mode slices of the tensor
H ∈ CJ×I×K , where J = max(J1, . . . , JK) (zeros are added
for those elements that are not defined in (4)). The tensor
representation enables the use of tensor-based algorithms to
compute the matrices A,Ck, and Bk. Subsequently, the ML-
GSVD of the tensor H (Figure 1) can be defined in a slice-
wise fashion as

Hk = Bk ·Ck ·AH ∈ CJk×I , (5)

where k ∈ {1, ldots,K} is the kth slice of H. The matrixA ∈
CI×Q, Q = min{

∑K
k=1 Jk, I} is nonsingular, and common

for all the K 3-mode slices of the tensor H. The matrix Bk ∈
CJk×Q corresponding to the k-th slice of H has orthogonal
columns such that BH

k ·Bk = IQ. The matrices Ck ∈ RQ×Q

are diagonal with non-negative entries satisfying
∑K

k=1C
2
k =

IQ. We additionally define a matrix C ∈ RK×Q in which
the diagonal elements of Ck are stacked as rows, i.e., Ck =
diag {C(k, :)}. Then, C has unit column norms:

∑K
k=1 c

2
k,i =

1 for all i = 1 . . . Q. Consequently, the optimization problem
to be solved can be stated as follows

minimize
A,Bk,Ck

K∑
k=1

‖Hk −BkCkA
H‖2F

s.t. BH
k Bk = IQ,

K∑
k=1

C2
k = IQ.

(6)

It should be noted that due to the imposed constraints, the
model in (5) is an approximation of Hk in a least squares
sense. However, in the following we will show that in some
cases the decomposition is exact.

As for the computation of the GSVD in [33], we assume
that the null spaces of the Hks do not overlap, i.e., null(H1)∩
null(H2)∩ · · · ∩ null(HK) = ∅. The elements of C ∈ RK×Q

are non-negative, and the columns of C have unit norm. The
values of the first row of C are sorted in ascending order, such
that the first row of C has the following structure

C(1, :) =
[
0T
p2+...+pK

σT
1 1T

p1

]
∈ R1×Q, (7)

where C(1, :) = diag{C1}, 1p1
is a vector of ones, and

0p2+...+pK
is a vector of zeros, which might have no entries.
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The values of σk ∈ Rck are in the range (0, 1), ck and pk
are the dimensions of the common and private subspaces,
respectively. The remaining rows of C are sorted according to
the first row. Whenever there are ambiguities (elements that
correspond to zeros in the first row), we sort the elements
of the second row in ascending order. Then, we turn to the
third row, the elements of which are sorted according to the
first and second rows. Whenever there are ambiguities (zeros
in the previous row), we sort the elements of the third row
in ascending order. After that, we switch to the fourth row,
and so on. Then, the columns of A and Bk are rearranged
accordingly. Generally, a permutation of the elements in
C does not change the meaning of the decomposition and
is performed for notational simplicity. The vectors of ones
represent the private subspace of the kth matrix, whereas σk

corresponds to the common subspace of all matrices or a group
of matrices. Since

∑K
k=1 c

2
k,i = 1, the private subspace of

the matrix Hk always coincides with the zero vectors of the
remaining matrices. The numerical example in (8) and (9)
below (I = 6, J1 = J2 = J3 = J4 = 2) illustrates the matrix
C before and after the reordering of the columns. First, the
columns are permuted in ascending order according to the
first row. Then, the columns one to four (that correspond to
zero elements in the first row) are reordered according to the
ascending order of the second row. Next, the rearrangement is
applied to the columns one, two, and three that coincide with
zeros in the second row.

Cbefore reordering =
1.0000 0.7050 0.0000 0.0000 0.0000 0.0000
0.0000 0.7092 0.0000 0.0000 1.0000 0.0000
0.0000 0.0000 1.0000 0.9193 0.0000 0.0000
0.0000 0.0000 0.0000 0.3935 0.0000 1.0000

 ,
(8)

Cafter reordering =
0.0000 0.0000 0.0000 0.0000 0.7050 1.0000
0.0000 0.0000 0.0000 1.0000 0.7092 0.0000
0.0000 0.9193 1.0000 0.0000 0.0000 0.0000
1.0000 0.3935 0.0000 0.0000 0.0000 0.0000

 .
(9)

Depending on the dimensions and the individual ranks of
theHks, where rk = rank{Hk}, we distinguish three different
cases:

Case 1: rk = I for ∀k. In this case, the matrix C has the
following structure:

C(k, :) =
[
σT
k

]
∈ R1×I , (10)

where σT
k = [σk,1, . . . , σk,I ], such that 1 > σk,i > 0 for

i ∈ {1, . . . , I}. The decomposition has the following form

Hk = Bk ·

σk,1 . . .
σk,I


︸ ︷︷ ︸

diag{C(k,:)}

·AH ∈ CJk×I , (11)

where diag {C(k, :)} is a full-rank diagonal matrix. The
columns of A are shared for all factorizations, and the
decomposition provides only the common subspace of size I

for all the matrix slices Hk, k = 1, . . . ,K. If the matrices
Hk have full rank, then the decomposition has the form as
in (11) if I ≤ JK , otherwise Case 2 applies.

Case 2: In this case, rk < I for some k, with
∑K

k=1 rk > I .
This configuration provides both private and common sub-
spaces. The dimensions of these subspaces depend on the
realization of the tensor and the sizes of the matrices Hk.
The zeros and ones correspond to the private subspace, while
the other non-zero terms correspond to the common subspace.
Such a configuration implies a common subspace for all the
K slices H1, . . . ,HK , or for some groups of matrices. In this
case, in general, the decomposition has the following structure

Hk =
[
OJk×I−rk B̂k

]
·

OI−rk
Σck

Ipk

 ·
A

H
ok

AH
ck

AH
pk

 ,
(12)

where Σck = diag{σk} and B̂k ∈ CJk×rk . The matrix A
is partitioned into submatrices Aok ,Ack , and Apk

of size
I × (I − rk), I × ck, and I × pk, respectively. The values of
ck and pk are defined by the realization and the dimensions
of the Hks, and ck + pk = rk. The submatrix Ack is
associated with the common subspace of the kth and some
(or all) other matrices, and the submatrix Apk

corresponds to
the private subspace of Hk. The matrix Aok is associated
with the private and common subspaces of other matrices
than the matrix k. While the matrix Ack is shared between
the corresponding matrices, the matrices Apk

are specific for
each factorization and insure a private subspace. Note that
depending on the dimensions of the different 3-mode slices
Hk, k ∈ {1, . . . ,K}, the number of common and private
subspaces are not the same for all the K slices. This means
that for a set of values of k, the decomposition provides
both common and private subspaces, while for the remaining
set, only common subspaces exist. For full rank matrices
satisfying I ≥ Jk for some or all slices k the decomposition
leads to (12). For K = 2, the ML-GSVD of two matrices
corresponds to the matrix-based GSVD. The dimensionality
of the common subspace for K = 2 is r1 + r2 − I and the
dimensionality of the two private subspaces are I − r2 and
I − r1, respectively.

Case 3:
∑K

k=1 rk ≤ I . In this case, the rows of C contain
only ones and zeros, and their ordering is defined as follows

C =


0T
pK

· · · 0T
p2

1T
p1

0T
pK

· · · 1T
p2

0T
p1

...
1T
pK

· · · 0T
p2

0T
p1

 ∈ RK×Q, (13)

where Q = min{
∑K

k=1 Jk, I}. The dimensions of the private
subspaces (1pk

) are equal to rk. As it can be seen from (13),
this case provides only private subspaces for each matrix Hk,
and therefore, the common factor matrix can be rewritten as

A =
[
AK · · · A1

]
. (14)

Then, we obtain:
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H1 =
[
OJ1×Q−p1 B̂1

]
·
[
OQ−p1

Ip1

]
︸ ︷︷ ︸

Ck

·

A
H
K
...
AH

1


= B̂1A

H
1

H2 = B̂2A
H
2

...

HK = B̂KA
H
K

(15)

As it can be observed from (15), the matrix Ck can be viewed
as a selection matrix, which separates A into the subblocks
that are not shared between the different Hks. Therefore, the
matrices in this case do not have any common factors. All
Hks are decomposed separately, and the submatrices in A
correspond to a private subspace of each matrix. Equation (15)
shows that by multiplying B̂1 from the right hand side by
an arbitrary non-singular matrix T and premultiplying AH

1

by T−1 gives the same function value. The decomposition is
essentially unique when it is subject only to this indeterminacy.
For the full-rank Hks, i.e., rank{Hk} = Jk, the decomposi-
tion has the form as in (13) if

∑K
k=1 Jk ≤ I .

IV. COMPUTATION OF ML-GSVD INSPIRED BY
PARAFAC2 ALGORITHMS

From equation (5), it can be observed that the ML-GSVD
has the same representation as the PARAFAC2 decomposi-
tion [35]. It is known from [35] that the uniqueness of the
PARAFAC2 decomposition (up to column permutation and
scaling) is ensured by the Harshman constraint BH

k Bk =
FHF , such that BH

k = FTVk, VkV
H
k = IR. In the ML-

GSVD, since the matrices Bk are orthogonal, we set F to the
identity matrix, which implies BH

k Bk = IQ. By extending
the GSVD to the tensor case, we also impose additional non-
negativity and unit norm constraints to the diagonal matrices
Ck. The similarity between PARAFAC2 and the ML-GSVD
motivates us to extend efficient algorithms for PARAFAC2 to
compute the ML-GSVD, as discussed in this section.

The ML-GSVD optimization problem can be formulated as
follows

minimize
A,Bk,Ck

K∑
k=1

‖Hk −BkCkA
H‖2F

s.t. BH
k Bk = IQ,

K∑
k=1

C2
k = IQ,

(16)

where Ck = diag {C(k, :)} is a diagonal matrix with non-
negative entries, and the matrix C ∈ RK×Q has unit norm
columns:

∑K
k=1 c

2
k,i = 1 for all i = {1, . . . , Q}.

To compute the ML-GSVD, we propose an algorithm
that has been inspired by the Direct Fitting algorithm for
PARAFAC2 in [36]. To this end, we alternately minimize (16)
over Bk for fixed A and C, and over A and C for a
fixed Bk. The main steps of the algorithm are summarized
in Algorithm 1.

In the first step, the algorithm is initialized with the values of
A based on the left singular vectors of

∑K
k=1HkH

H
k (SVD-

based initialization) and with a random non-negative matrix C
satisfying

∑K
k=1C

2
k = IQ. The unitary matrix Bk is updated

in the second step via minimizing
K∑

k=1

‖BH
kHk −CkA

H‖2F (17)

subject to BH
k Bk = IQ, which corresponds to the Orthogonal

Procrustes Problem (OPP) [37] with the solution

Bk = (TkT
H
k )−

1
2Tk, (18)

where Tk = HkH̃k, and H̃k = HH
k Bk = ACk. Next, we

update the matrices A and Ck by solving (17) jointly for
all ks. Let H̃ be a tensor in which all H̃ks are stacked as
3-mode slices. Then the constrained CP decomposition of H̃
in terms of its frontal slices is written as

H̃k = ACkIQ. (19)

Therefore, the 1-mode and the 3-mode unfoldings of H̃ satisfy

[H̃](1) = A(IQ �C)T, (20)

[H̃](3) = C(A � IQ)T, (21)

where the rows of C contain the diagonal elements of the
matrices Ck. Consequently, the least squares solution for the
matrices A and C is calculated as follows

A = [H̃](1)(IQ �C)T+ (22)

= [H̃](1)

(
bdiag

{
C(:, 1)

H

‖C(:, 1)‖2
, . . . ,

C(:, Q)
H

‖C(:, Q)‖2

})T

,

(23)

C = [H̃](3)(A � IQ)T+ (24)

= [H̃](3)

([
diag

{
A(1, :)H

‖A(:, 1)‖2

}
, . . . , diag

{
A(Q, :)H

‖A(:, Q)‖2

}])T

.

(25)

Equations (23) and (25) allow us to avoid the explicit compu-
tation of the pseudo-inverse in (22) and (24), see Appendix A
for details.

In the original PARAFAC2 algorithm, the matrices A and
C are computed by calculating the CP decomposition of H̃. In
contrast to PARAFAC2 by taking into account the ML-GSVD
constraints in (16), we can directly update the matrices A and
C without computing the CP decomposition.

In the fourth step, a normalization of the columns of C is
performed to ensure that they have unit norm. To ensure that
the elements of C are real-valued, we multiply diag {C(k, :)}
by its complex conjugate, and compensate it in the columns
of A in the fifth step. The algorithm stops if it exceeds the
predefined maximum number of iterations or if the change

of the residual given by ∆ER =
(Eold

R −ER)
Eold

R

is smaller
than a predefined threshold, implying the convergence of the
algorithm, where Eold

R represents the residual in the previous
iteration. In the end of the algorithm, the elements of C are
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Algorithm 1 ALS-based direct fitting algorithm for the computation
of the ML-GSVD of the set of K matrices Hk ∈ CJk×I .
Require: Tensor H

1. Initialize A and C
repeat
2. for k = 1, 2 . . . ,K do

Reconstruct H̃ with A and C:

H̃k = A · diag {C(k, :)}
Update Bk (k = 1, . . . ,K)

Bk = (TkT
H
k )−

1
2Tk, Tk = HkH̃k

Update H̃: H̃k = HH
k ·Bk

end for
3. Update A and C :

A = [H̃](1)

(
bdiag

{
C(:, 1)H

‖C(:, 1)‖2 , . . . ,
C(:, Q)H

‖C(:, Q)‖2

})T

,

C = [H̃](3)

([
diag

{
A(1, :)H

‖A(:, 1)‖2

}
, . . . , diag

{
A(Q, :)H

‖A(:, Q)‖2

}])T

4. Normalize the columns of C
5. To ensure the entries of C are real and non-negative, replace
the columns of C by their absolute values, and compensate it in
the columns of A:

for i = 1, 2 . . . , I do
solve |C(:, i)| = αC(:, i), A(:, i) = 1

α
A(:, i)

end for
6. for k = 1, 2 . . . ,K do

Ĥk = A · diag {C(k, :)} ·BH
k ∈ CI×Jk

end for
ER =

(∥∥∥Ĥ−H
∥∥∥2
H

)
/‖H‖2H

until ∆ER =
(
Eold

R − ER

)
/Eold

R is smaller than a predefined
threshold or the max number of iterations is reached. Eold

R is the
residual in the previous iteration
7. Order the columns of C as in (7), and reorder the columns of
A and Bk accordingly.

ordered as in (7) and in the description below this equation,
while the columns of A and the rows of Bk are reordered
accordingly.

A. Initializations and computational complexity

In the first case (described in the previous section), where
rk = I for ∀k the algorithm provides an essentially unique
approximate solution up to a scaling of the columns in A and
Bk. It requires only one initialization of the algorithm. In the
second case, we recommend to initialize the algorithm multiple
times and choose the solution with the minimum reconstruc-
tion error ER in order to avoid hitting a local minimum of the
cost function (16). Given an arbitrary tensor, our simulations
show that the proposed ML-GSVD is exact in Case 3. Taking
into account the structure of the matrix C in (13), for Case 3,
the algorithm can be directly initialized with the matrix of ones
and zeros as in (13) (”closed form (CF)” initialization). Then,
an update of C should be skipped in Step 3 of the algorithm.
In Cases 1 and 2, a good approximation is obtained in the
least squares sense. If K = 2, the ML-GSVD leads to an
exact solution, and it is equal to the GSVD of two matrices.

The computational complexity per iteration of the main
steps of the proposed Algorithm 1 is as follows. The SVD-
based initialization would amount to O(I3). The computa-

tional load to estimate the matrix Bk is O(KI3). The direct
LS solution (23) and (25) for the matrices A and B has
complexity O(KI2).

B. Alternative ways to update the matrices A and C

In this subsection, we consider three alternative ways to
compute the matrices A and C in the third step of the
Algorithm 1.

1) PARAFAC2 and tensor contractions: As previously men-
tioned, in general, any PARAFAC2 algorithm can be modi-
fied for the calculation of the ML-GSVD. Therefore, in the
following we will show how the matrices A and C can
be calculated via generalized tensor contractions [38]. In
contrast to a slice-wise representation, the generalized tensor
contractions allow to represent an N -way array explicitly in
tensor form. Following the derivations in [38], we can express
the tensor H ∈ CI×K×J (the dimensions are permuted) in the
constrained CP format

H = I3,Q ×1 Ā×2 C̄ ×3 B̄, (26)

which is equal to a constrained CP decomposition [39], where
Ā = A

(
1T
K ⊗ IQ

)
, C̄ = (IK ⊗ 1T

Q) � vec
{
CT
}T

, and B̄ =
[B](2). Consequently, the matrixA can be estimated as follows

A = [H](1) ·
(
(1T

K ⊗ IQ) · (B̄ � C̄)T
)+
. (27)

Then the matrix C is computed by solving the following non-
negative least squares problem

vec {H} ≈
(

[B̃](2) � (IK ⊗ 1T
R) � Ā

)
· vec

{
CT
}
. (28)

2) Least-squares Khatri-Rao factorization: The 2-mode
unfolding of the tensor H̃ in (19) can be written as follows

[H̃](2) = (C �A)T, (29)

which means that we can employ the least-squares Khatri-Rao
factorization (LSKRF) [40] to estimate the matrices A and C.

3) Joint diagonalization (JD): Let us consider the Gramian
matrix HH

k Hk

HH
k Hk = (BkCkA

H)H(BkCkA
H) (30)

= ACkB
H
k BkCkA

H (31)

= AC2
kA

H = H̃kH̃
H
k . (32)

The matrix A jointly diagonalizes the K Gramians HH
k Hk

and therefore can be found from the following approximation
problem [41]

min

K∑
k=1

‖H̃kH̃
H
k −AΛkA

H‖2F, (33)

where Λk = C2
k is a diagonal matrix. The author in [41] pro-

poses the ”AC-DC” algorithm that iteratively minimizes (33)
alternating between the LS solution for the diagonalizing
matrixA and the diagonal matrices Λk. It should be noted that
the solution of (33) is only essentially unique (permutation and
scaling ambiguities are present), and the convergence of (33)
does not guarantee the convergence of the parameters A and
Λk. However, we have observed in practice that this joint
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diagonalization provides satisfactory estimates for the matrices
A and Ck and therefore can be used as a reliable starting point
for the ML-GSVD algorithm.

V. NUMERICAL RESULTS

In this section, we carry out a simulation study of the ML-
GSVD. In order to assess the performance of the proposed
algorithm, we apply it to synthetic data. As an accuracy
measure, we use the Squared Reconstruction Error (SRE)

SRE =

∥∥∥Ĥ−H
∥∥∥2
H

‖H‖2H
, (34)

where H is the original tensor, and Ĥ is the reconstructed
tensor based on the estimated factor matrices A, Bk, and
Ck. In addition to the SRE, for each case of the ML-GSVD
presented in Section III, the performance is also evaluated in
terms of the average run time. In our simulations, a complex-
valued tensor H is generated randomly from a zero mean
unit variance complex Gaussian distribution. The maximum
number of iterations of the algorithm is set to 500. The
algorithm stops when the change in the error is smaller than
a predefined threshold (set to 10−5 in our simulations), or
it reaches the maximum number of iterations. We compare
the SVD- and JD-based initializations of the algorithm and
different estimation schemes for the matrices A and Ck:
Direct LS solution ((23) and (25)), tensor contractions-based
(TC), and the LSKRF-based solutions. For our simulations,
we assume that the matrices in the decomposition have a full
rank. The performances of the algorithms are represented by
Complementary Cumulative Distribution Functions (CCDFs).
In our simulations, the CCDF curves describe the probability
that the SRE or the run time will be greater than a certain
value on the x-axes. We present the CCDF of the error (time)
since it allows an illustration of both average error (time) and
its distribution. In all plots presented below the results were
averaged over 1000 Monte Carlo runs. The vertical lines in
the CCDF plots represent the mean values for each curve.
Solid, dashed, and dotted lines represent SVD, JD, and CF
initializations. Markers denote algorithms: blue triangle, red
circle, and green square denote the direct least squares (Direct
LS), tensor contractions (TC), and least squares Khatri-Rao
factorization (LSKRF), respectively.

In Figures 2(a) and 2(b) we depict the CCDF of the SRE
and the CCDF of the execution time for Case 1 of the ML-
GSVD, where the common column dimension is I = 3 and
the row dimension Jk is equal to 4 for all 3-mode slices of the
tensor. Figure 2(a) depicts the SRE for tensors with K = 3
and K = 10 slices. As it can be observed, the reconstruction
error increases with increasing K. This is also true for
other cases of the ML-GSVD. Therefore, for the remaining
simulations, we only display the results for K = 3 in order to
avoid an overload of the plots. Although all initialization and
factor estimation schemes display a similar SRE performance,
the computational complexity varies. Figure 2(b) shows that
the Direct LS and LSKRF solutions have the smallest time
complexity, and the solution using tensor contractions is the

most complex from the computational point of view. This is
explained by the fact that the first method does not require
the computation of a matrix inverse, and the second solution
involves the tensor unfolding and hence the multiplication of
matrices of higher dimensions. If we configure the tensor as
in Case 1, the ML-GSVD provides only a common subspace
for all K matrices in the decomposition. Below is an example
of the matrix C for Case 1:

C =

σ1,1 . . . σ1,I
...

. . .
...

σK,1 . . . σK,I

 ∈ RK×I , (35)

where σk,i ∈ (0, 1). We have observed in practice that this
case requires only one initialization of the algorithm.

For the second case, the decomposition provides both com-
mon and private subspaces. Depending on the dimensions and
ranks of the slices of the tensor, the private subspace can be
empty for some ks. The common subspace can be shared by
all the matrices in the decomposition or by some groups of
matrices. Therefore, the second case is of great interest in
terms of the applications. Below is an example of the matrix
C for the Case 2 with I = 8 and the Jks are equal to 3, 4,
and 4, respectively

C =

0 0 0 0 0 σ1,6 σ1,7 1
0 0 σ2,3 1 1 σ2,6 0 0
1 1 σ3,3 0 0 0 σ3,7 0

 ∈ RK×I . (36)

As it can be observed from the third, sixth, and the seventh
columns, the common subspace is shared by the groups of
two matrices ({σ2,3, σ3,3}, {σ1,6, σ2,6}, and {σ1,7, σ3,7}).
Moreover, all the matrices have a private subspace of dimen-
sion 1, 2, and 2, respectively. The CCDFs of the SRE and the
time are shown in Figures 2(c) and 2(d). In contrast to the
previous results, for Case 2, the JD initialization leads to a
smaller reconstruction error and converges faster.

Figures 2(e) and 2(f) show the CCDF of the SRE for Case 3,
where I = 9, and all Jk = 3, K = 3. The resulting matrix C
has the following structure

C =

0 0 0 0 0 0 1 1 1
0 0 0 1 1 1 0 0 0
1 1 1 0 0 0 0 0 0

 ∈ RK×Q. (37)

Case 3 results in an exact decomposition with a private
subspace for each slice of the tensor. We have observed
in practice that in this case, the algorithm is prone to hit
a local minimum. Therefore, for the SVD- and JD-based
initializations, we recommend to use several initializations to
ensure convergence. For the simulation results shown here,
the algorithms were initialized 10 times. As it can be seen in
Figure 2(e), the closed form (CF) initialization converges in all
runs, as well as the SVD-based initialization always converges
to the exact solution because the matrix C is chosen randomly,
and at least one initialization will lead to the global minimum.
In Case 3 an initialization via JD is not recommended as it can
be seen by the error floor in Figure 2(e). The SVD initialization
outperforms the JD in terms of the computational time, due to
the iterative nature of the JD algorithm and the higher column



8

10
-3

10
-2

10
-1

SRE

10
-2

10
-1

10
0

C
C

D
F

SVD init

JD init

Direct LS

TC

LSKRF

K=3

K=10

(a) CCDF vs. SRE. Case 1: I = 3, all Jk = 4.

10
-3

10
-2

10
-1

Time [s]

10
-3

10
-2

10
-1

10
0

C
C

D
F

SVD init

JD init

Direct LS

TC

LSKRF
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(c) CCDF vs. SRE. Case 2: I = 8,K = 3, Jk =
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(e) CCDF vs. SRE. Case 3: I = 9,K = 3, Jk =
[3, 3, 3].
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(f) CCDF vs. Time. Case 3: I = 9,K = 3, Jk =
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Fig. 2: CCDF vs. SRE and time for 3 cases of the ML-GSVD. Averaged over 1000 realizations of H. Solid, dashed, and dotted
lines represent SVD, JD, and CF initializations. Markers denote algorithms: blue triangle, red circle, and green square denote
the direct least squares (LS), tensor contractions (TC), and least squares Khatri-Rao factorization (LSKRF), respectively.

dimension, compared to the row dimension. The probability
of convergence also depends on the number of slices, and is
higher for the smaller Ks.

Recommended implementations for the three cases: As it
can be seen from Figure 2(e), the CF initialization ensures
the 100% convergence of the algorithm as compared to
the JD-based initialization. Additionally, it reduces the time-
complexity of the algorithm in comparison to SVD or JD-
based initializations. Table I shows the algorithms and initiali-
zations that have the best reconstruction error and smallest

time complexity performances. Considering the simulation
results and the accuracy-complexity trade-off, we recommend
to use the Direct LS solution with one SVD-based initialization
for Case 1, multiple JD-initializations for Case 2, and Direct
LS with closed form initialization for Case 3.

In the next simulation, we assess how the simulation time
changes with increasing K (number of tensor slices). We use
the SVD-based initialization and different ways to estimate
the matrices A and C. As it can be observed in Figure 3,
the computational time increases with the increasing K for
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Fig. 3: Simulation time. The third dimension (K) is changing,
I = 3, Jk = 3.

the tensor contractions based estimation, but does not change
greatly in case of the direct LS or LSKRF-based solution.

VI. APPLICATION OF THE ML-GSVD IN MULTICAST
BEAMFORMING

As a promising application of the proposed ML-GSVD, we
consider coordinated beamforming using joint broadcast and
unicast transmissions. We view the 3-mode slices of the tensor
H as the channels of K users and construct the precoding and
decoding matrices based on the ML-GSVD factor matrices. In
the following, we will describe a simple ”toy” model of the
ML-GSVD-based communication system and show how the
subspace structure of the ML-GSVD, presented in Section III,
can be utilized to simultaneously send the common messages
to a group of users and private messages to individual users.

A. System model and ML-GSVD-based beamforming

We consider a downlink MIMO-OFDM system with multi-
cast transmission as depicted in Figure 4, where one base sta-
tion (BS) equipped with MT antennas transmits common and
private messages to K users with MRk

receive antennas each
using N subcarriers. We represent the MIMO-OFDM channel
between the BS and the kth user on the nth subcarrier by
Hk,n ∈ CMRk

×MT . We focus on the case where MRk
< MT ,

and
∑K

k=1MRk
> MT . This scenario corresponds to the

case where the ML-GSVD provides both private and common
subspaces (Case 2). Furthermore, each user observes zero
mean circularly symmetric complex Gaussian white noise nk,n

Case 1 Case 2 Case 3
Reconstruction
error

all alg-s,
any init.

all alg-s,
JD init.

TC,
SVD, CF init.

Time
complexity

LSKRF, LS,
SVD init.

LS,
JD init.

LS,
CF init.

TABLE I: Algorithms with the smallest reconstruction error
and the smallest time complexity.

with variance σ2
n. Then, the received signal on subcarrier n of

the kth user is given by

yk,n = Hk,nFnxn + nk,n, (38)

and at the detector we get

ŷk,n = Wk,n (Hk,nFnxn + nk,n) , (39)

where xn denotes the transmitted signal on the nth sub-
carrier and satisfies E

{
xnx

H
n

}
= IMT

/MT . The matrices
Fn and Wk,n are the common transmit beamforming and
the receive beamforming matrices, respectively. As in (5),
the ML-GSVD of the channel matrices Hk,n is given by
Hk,n = Bk,nCk,nA

H
n . Therefore, the precoding matrix Fn

can be determined as Fn = α{AH
n}−1C(Q), and the receive

decoding matrices as Wk,n = {BH
k,n}R(Q), where α is a

power normalization coefficient, and C(Q) and R(Q) denote
columns and rows of the matrix with indices in the set
Q ⊆ {1, . . . ,MT }. An appropriate selection scheme will
be described at the end of this subsection. The elements
of Ck contain the normalized gains of the corresponding
virtual channels (VCs) (private or common). The condition
MT > MRk

is the requirement to have private subspaces,
while if MT ≤ MRk

only broadcasting is possible. The
private subspaces (ones and zeros) in Ck are used by the
transmitter to send confidential messages to the user Uk, while
the common subspace (σk in Ck) is used for broadcasting
common messages to all users. The private subspaces always
have unit normalized gains, while the normalized gains of
the common subspaces are less than one. Note that the
resulting number of private and common subspaces depends
both on the dimensionality and realization of the channel
tensor Hn ∈ CMR×MT×K , MR = max(MR1

, . . . ,MRK
).

The matrices An and Bk,n jointly diagonalize the channel
represented by Hk,n to get virtual channels that enable a
simultaneous point-to-multi-point connection with private and
common messages. The required subset of VCs (private or
common) can be chosen by an appropriate selection of the
columns of the transmit precoding matrix and the correspon-
ding rows of the receive beamforming matrices. For instance,
if the ith and (i+1)th columns ofC lie in a common subspace,
for broadcasting, we choose Q ∈ {i, i+ 1}, and select the ith
and (i + 1)th columns and rows of the transmit and receive
beamforming matrices, respectively. For the transmission of
the private messages, we choose the vectors that correspond
to a private subspace (values equal to one in C), and thus,
enabling a simultaneous transmission of private and common
messages. If multiple private subspaces are available, we
transmit multiple streams to that particular user. We construct
the channel tensor Hn for each subcarrier and calculate the
ML-GSVD of the set of K matrices to obtain the precoding
and decoding matrices on each subcarrier.

B. Simulation results

In this subsection, we evaluate the performance of the
proposed ML-GSVD-based beamforming in terms of the
achievable sum rates and compare it with the state-of-the-
art techniques. To the best of our knowledge, there are no
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…

Fig. 4: Joint multicast and unicast transmission

schemes in the literature that combine MIMO-OFDM and
multicast/unicast transmission. Therefore, when assessing the
performance of the multicast transmission, we compare it to
the algorithm in [20], and in case of the unicast transmission
we use the FlexCoBF [42], [43] scheme as a reference.

The authors in [20] propose a multicast precoding scheme
for MIMO-OFDM system to transmit only common messages
to a selected group of users. They employ the linear sum (LS)
based precoding matrix, which is given as follows

F LS
n = α

∑
k∈S

βkVn,k, (40)

to maximize the individual rate of user k on the subcarrier
n. The matrix Vn,k is the right singular matrix corresponding
to the non-zero singular values of the channel matrix Hn,k,
S is a subset of users that receive the common message, βk
is a power normalization according to the effective channel
gain, and α is a normalization constant to fulfill the power
constraint ∥∥F LS

n

∥∥2
F

= Pn. (41)

We compare this linear sum based precoding in (40) with the
ML-GSVD-based precoding

Fn = α{AH
n}−1C(Q), (42)

where An is obtained from the ML-GSVD of the channel
tensor Hn, and C(QS) is the set of columns that correspond
to a common subspace of the group of users S.

For the private messages transmission, we compare the ML-
GSVD-based scheme with FLexCoBF proposed in [42], [43].
The FlexCoBF technique is applicable in the case where the
total number of receive antennas of the served users is larger
than the number of transmit antennas of the serving base
station (BS). For more details, we refer the reader to [42],
[43].

We compare the performance of the different algorithms in
terms of the sum rate, and calculate the achievable rate of the

user k on subcarrier n as follows

Rk,n = log2 det

(
INr +

Pn

MTN0
Hn,kFnF

H
n H

H
n,k

)
. (43)

In contrast to the aforementioned schemes, the ML-GSVD
enables the simultaneous transmission of common and private
messages. In the following, we will consider two simulation
scenarios to assess the performance of the ML-GSVD scheme
in terms of the achievable sum rate. Furthermore, we will
compare it with the aforementioned schemes.

For the first simulation, we consider a MIMO-OFDM sys-
tem with 5 uncorrelated subcarriers and K = 3 users with
6 antennas each. The number of transmit antennas at the
base station is equal to MT = 9. Such a configuration of
the system enables both unicast and multicast transmission
(see Section III). To illustrate the effect of simultaneously
serving common and private channels via the ML-GSVD,
we consider a simple uncorrelated Rayleigh fading MIMO
channel model. With the ML-GSVD-based scheme we can
transmit both common and private messages simultaneously
on the same subcarrier as it is shown in Table II, while for the
reference algorithms we use some subcarriers for the unicast
and some for the multicast transmission as it is shown in
Table II, where p1, p2, and p3 denote the private channels to
the corresponding users, and c123, c12, c13, and c23 are the
common channels to all three users, and to two selected users,
respectively. Note that the ML-GSVD enables the automatic
user grouping and scheduling based on the ML-GSVD singular
values (matrix C in (5)). On the other hand, for the reference
algorithms, we have to fix the unicast and multicast groups and
assign them to different subcarriers. Furthermore, we also fix
the number of streams rk for the different users and channels
as it is shown in Table II. For the reference algorithms, we set
the number of private streams to each user to rk = 3, where∑K

k=1 rk = MT , and the number of common streams is shown
in Table II. In case of the ML-GSVD-based beamforming, the
number of virtual channels (VCs) depends on the realization
of the channel. The number of private and common streams
varies for each subcarrier: c{l} = {0 . . .min{MR{l}}}, where
{l} ⊆ {1, . . . ,K}. We calculate the minimum achievable
sum rate for each type of channel (common or private) as
mink

{∑N
n=1Rk,n

}
and average the results over T = 10000

Monte-Carlo trials.

Proposed scheme
N Channels # of streams rk Algorithm
1 pk & c{l} pk: {0 . . .MRk

}
c{l}: {0 . . .min{MR{l}}}
for each subcarrier,∑N
n=1 rk,n in total

{l} ⊆ {1, . . . ,K}

ML-GSVD
2 pk & c{l} ML-GSVD
3 pk & c{l} ML-GSVD
4 pk & c{l} ML-GSVD
5 pk & c{l} ML-GSVD

State-of-the-art
1 p1, p2, p3 r1, r2, r3 FlexCoBF [42], [43]
2 c123 min{MRk

} Linear Sum [20]
3 c12 min{MR1

,MR2
} Linear Sum [20]

4 c13 min{MR1
,MR3

} Linear Sum [20]
5 c23 min{MR2

,MR3
} Linear Sum [20]

TABLE II: Joint multicast and unicast transmission: 5 subcar-
riers and 3 users (ML-GSVD & reference algorithms).
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Fig. 5: Multicast transmission: Private (PS) and common (CS) subspaces. 3 users, MT = 9,MR = [6, 6, 6]. Averaged over 5
subcarriers and 10000 trials. The solid lines represent the proposed ML-GSVD precoding, and the dashed lines correspond to
the reference algorithms.
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Fig. 6: Histogram - Private and common channels (ML-
GSVD). Colors indicate the average number of VCs (streams)
at each subcarrier: -0, -1, -2, -3, and -4 VCs,
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Figure 5(a) depicts the sum rate of the private channels to
all three users and Figure 5(b) shows the average sum rate for
common channels to a group of two users or to all three users.
The solid and dashed lines correspond to the ML-GSVD-based
and reference schemes-based beamforming, respectively. As it
can be observed, the ML-GSVD-based scheme outperforms
the reference schemes for both private and common messages.
This is explained by the fact that the ML-GSVD precoding
allows transmitting both private and common messages on one
subcarrier, which increases the average total number of streams

to each user, which can be calculated as follows

r̂k =
1

T

N∑
n=1

sk,n, (44)

where sk,n is the number of streams for the given channel
type, N is the number of subcarriers, and T is the number
of simulation trials. Additionally, the proposed ML-GSVD-
based scheme does not fix the number of private and common
streams, and their number depends on the realization of the
channel and, therefore, can vary depending on the channel
conditions. As a result, we observe a higher sum rate for most
of the channel types. The rates for the common channels are
higher than the rates of the private channels due to the fact
that, as can be seen on the histogram, there are on the average
more common channels than private channels.

Figure 6 illustrates the histogram of the probability of
having private subspaces (PSs) and common subspaces (CSs)
for each user or user group. Labels on the x-axis represent
the users or the groups of users (p1 is a private channel
to user 1, c1,2 is a common channel to users 1 and 2,
etc.). The results are averaged over all subcarriers. As it can
be seen from the histogram, the proposed ML-GSVD-based
beamforming provides CSs between all three users and CSs
between two of three users. As described in Section III, the
number of these subspaces (virtual channels) depends on the
realization of the channel, the number of receive and transmit
antennas (tensor dimensions), and the channel rank. In case
of two users, the number of common virtual channels is equal
to MR1 + MR2 − MT and number of private channels is
MT − MR2 and MT − MR1 , respectively (assuming full-
rank channels). While for two users (where the ML-GSVD
simplifies to the GSVD), the dimensions of PSs and CSs
can be described explicitly, with K > 2 users, additional
subspaces between the subgroups of users can appear, which
highly depends on the realization of the channel. With an
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Fig. 8: Histogram - Private and common channels (ML-
GSVD). Colors indicate the average number of VCs (streams)
at each subcarrier: -0, -1, -2, and -3 VCs, respec-
tively. Labels on the x-axis of the histogram represent users
or groups of users (p1 is a private channel to user 1, c1,2 is a
common channel to users 1 and 2, etc.)

increasing number of users and antennas, more combinations
of private and common subspaces are possible. The histograms
demonstrate the probabilities for the expected dimensions of
those particular channels. As it can be observed from Figure 6,
in this simulation scenario users can have 0, 1, or 2 private
channels (1 with the highest probability). There is also a high
probability to obtain 1 or 2 common channels to a group of
two users, and 2 or 3 common channels to all users. The
total number of virtual channels (streams) for one realization
of the channel tensor is equal to MT . Therefore, for some
of the Monte-Carlo runs, there are zero channels of a certain

type. This can be associated, for instance, with bad channel
conditions and has a potential to be used for the selection of
the optimal set of users to be served.

In contrast to the first simulation, in the next simulation
we consider an asymmetric scenario with the same number
of transmit antennas MT = 9 but an increased number of
K = 4 users having 4, 5, 5, and 5 antennas, respectively.
This configuration also leads to both private and common
virtual channels. Due to the increased number of users, the
number of possible channel types also increases. Therefore,
in this scenario, we assume 12 subcarriers. As in the pre-
vious simulation, we transmit private and common messages
simultaneously on all subcarriers based on the ML-GSVD.
For the reference algorithms, one subcarrier is used for the
private messages, and the other subcarriers are employed
for the transmission of common messages, similarly as in
Table II. There are 15 types of virtual channels in total,
which includes private channels p1, p2, p3, and p4, common
channels to all four users c1234, common channels to three of
four users c123, c124, c234, and c134 (combinations of 3 users
out of a set of 4 users which is described by the binomial
coefficient

(
4
3

)
), and common channels to two of four users

c12, c13, c14, c23, c24, and c23 (combinations of 2 users out
of a set of 4 users, described by the binomial coefficient(
4
2

)
). Figure 7(a) depicts the achievable sum rates for the

private channels of four users. The solid lines represent the
proposed scheme, and the dashed lines denote the FlexCoBF
precoding scheme from [42] and [43]. Figure 7(b) depicts
the average sum rates for the common channels to a group
of two, three, and four users. As in the previous simulation
scenario, the ML-GSVD scheme (solid lines) is compared to
the multicast beamforming technique in [20] (dashed lines). As
it can be seen, the proposed scheme outperforms the reference
techniques for all channel types. Figure 8 shows the possible
channel types associated with this simulation scenario and
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their corresponding probabilities in case of the ML-GSVD-
based transmission.

We have also observed in practice that with an increasing
number of users K, the probability to obtain a common
channel to all users decreases, and there is a higher chance
to have private channels or common channels to a group of
two or three users. This also opens up an opportunity to use the
ML-GSVD for the user scheduling, since it can be performed
automatically based on the generalized singular values of the
ML-GSVD.

VII. CONCLUSIONS

We have presented a new Multilinear Generalized Singular
Value Decomposition (ML-GSVD) as an extension of the
matrix-based GSVD to jointly factorize a set of an arbitrary
number (K ≥ 2) of matrices with a common number of
rows or columns. To this end, we have proposed algorithms
to compute the ML-GSVD as a tensor factorization with con-
straints. In comparison with existing GSVD generalizations,
our ML-GSVD preserves the properties of the original GSVD,
such as orthogonality of the 2-mode factor matrices. We have
considered three different cases of the ML-GSVD depending
on the dimensions and the rank-structure of the decomposed
matrices. Moreover, we have shown that every case provides
a certain decomposition structure with private and/or common
subspaces. An ALS-based algorithm to compute the ML-
GSVD has been developed as an extension of an algorithm
to compute the PARAFAC2 decomposition. Furthermore, we
have specified an appropriate initialization scheme for each
case of the ML-GSVD to guarantee convergence.

As an application of the proposed ML-GSVD, we have
considered multiuser MIMO-OFDM systems with joint unicast
and multicast transmissions. For such a scenario, we have
shown that the factor matrices of the ML-GSVD can be used
as precoding and decoding matrices, respectively. Moreover,
we demonstrate that the aforementioned three cases of the ML-
GSVD correspond to the transmission of private or common
messages (or both) to different sets of users. According to our
numerical results, the ML-GSVD outperforms the reference
multicast and unicast precoding schemes in terms of the
average sum rate.

Since the ML-GSVD extends the matrix GSVD, it can be
employed further in a number of different communication and
biomedical applications, such as coordinated beamforming,
MIMO relaying, physical layer security, and genomic signal
processing. The ML-GSVD allows to increase the number of
jointly factorized matrices and, therefore, can be used in more
complex systems.

APPENDIX A

Exploiting the Khatri-Rao product with an identity matrix,
the least squares solution for the matrix A in (22), can be
expressed as

A = [H̃](1) (bdiag {C(:, 1), . . . ,C(:, Q)})T+ (45)

Then, using the Moore–Penrose pseudo-inverse of the block-
diagonal matrix, we can rewrite (45) as follows

A = [H̃](1)

( [
1� diag

{
‖C(:, 1)‖2, . . . , ‖C(:, Q)‖2

}]
(46)

· bdiag {C(:, 1), . . . ,C(:, Q)}H
)T

(47)

= [H̃](1)

(
bdiag

{
C(:, 1)

H

‖C(:, 1)‖2
, . . . ,

C(:,Q)
H

‖C(:,Q)‖2

})T

(48)

where � denotes the element-wise division. With the identity
on the right hand side of the Khatri-Rao product, equation (24)
can be rewritten as follows

C = [H̃](3)


diag {A(1, :)}

...
diag {A(Q, :)}




T+

(49)

Again, using the Moore–Penrose pseudo-inverse, the least
squares solution for C can be expressed as

C = [H̃](3)

([
1� diag

{
‖A(:, 1)‖2, . . . , ‖A(:, Q)‖2

}]
(50)

·

diag {A(1, :)}
...

diag {A(Q, :)}


H)T

(51)

= [H̃](3)

([
diag

{
A(1, :)H

‖A(:, 1)‖2

}
, . . . , diag

{
A(Q, :)H

‖A(:, Q)‖2

}])T

(52)
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