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Abstract—In this letter, we consider an intelligent reflecting
surface (IRS)-assisted multiple input multiple output (MIMO)
communication and we optimize the joint active and passive
beamforming by exploiting the geometrical structure of the
propagation channels. Due to the inherent Kronecker product
structure of the channel matrix, the global beamforming
optimization problem is split into lower dimensional horizontal
and vertical sub-problems. Based on this factorization property,
we propose two closed-form methods for passive and active
beamforming designs, at the IRS, the base station, and user
equipment, respectively. The first solution is a singular value
decomposition (SVD)-based algorithm independently applied
on the factorized channels, while the second method resorts
to a third-order rank-one tensor approximation along each
domain. Simulation results show that exploiting the channel
Kronecker structures yields a significant improvement in terms
of computational complexity at the expense of negligible spectral
efficiency (SE) loss. We also show that under imperfect channel
estimation, the tensor-based solution shows better SE than the
benchmark and proposed SVD-based solutions.

Index Terms—intelligent reflecting surface, channel
factorization, joint active and passive beamforming, MIMO,
terahertz.

I. INTRODUCTION

Intelligent reflecting surface (IRS) is a candidate technology
to achieve high data rates required for beyond fifth
generation (B5G) wireless networks [1], [2]. The IRS is a
two-dimensional planar array composed of multiple passive
reflecting elements capable of changing the electromagnetic
properties of the impinging waves, e.g., the phase and
amplitude, so that the received signal can be added
constructively at the receiver. On the other hand, terahertz
(THz) communications suffer from high penetration and
attenuation losses, which leads to sparse channels [3]. To
combat the path loss effects, passive beamforming using IRS
may be introduced. Although it is an attractive solution for
THz communications, the joint design of the active precoder,
at the transmitter, combiner, at the receiver, and passive IRS
phase shifts is challenging.

In this regard, [4] proposed two joint passive and
active beamforming methods to maximize the received
signal power at the user in a multiple input single output
(MISO) network. Then, [5] and [6] provided two different
approaches for joint active and passive beamforming in a
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André L. F. de Almeida thanks CNPq for its financial support under grant
312491/2020-4. G. Fodor was partially supported by the Digital Futures
project PERCy. email: yurisales@gtel.ufc.br

multi-user MISO networks. Regarding IRS-assisted multiple
input multiple output (MIMO), [7] proposed three singular
value decomposition (SVD)-based solutions for the joint active
and passive beamforming design to maximize the spectral
efficiency (SE) at the user-equipment (UE). Also, [8] and [9]
proposed an alternating optimization scheme to design the
active and passive beamforming. In [10], the authors proposed
two low-complexity solutions for the beamforming design.
Although some of those papers focus on low-complexity
solutions, they still do not exploit the explicit geometrical
structure of the channels to split the optimization problem into
horizontal and vertical sub-problems with lower dimensions.
The works in [11]–[15] focused on channel estimation
for IRS-assisted communications using tensor decomposition
methods, such as the canonical polyadic decomposition.
Furthermore, [16] and [17] proposed a rank-one tensor
approximation to reduce the overhead associated with the IRS
phase shift feedback. To the best of our knowledge, there is
no work that proposes tensor modeling for the joint active and
passive beamforming design.

Our contributions can be summarized as follows:

1) We propose a novel signal modeling that exploits
the geometrical channel structure at the base station
(BS), the IRS, and the UE by decomposing the
received signal into horizontal and vertical components.
This approach allows splitting the joint active/passive
beamforming problem into independent sub-problems of
lower dimensions. Each sub-problem can be individually
solved, and the solutions of which are combined using
the Kronecker product to obtain the overall solution.

2) We propose two algorithms that exploit the Kronecker
product structure of the cascaded MIMO channel to
design the active and passive beamforming. The first
method, referred to as Kronecker factorization (KF),
directly exploits the Kronecker structure by means of
SVD-based rank-one approximations applied on the
factorized channels. Our second solution, referred to as
third-order tensor (TOT), recasts the cascaded channel
along each domain as a third-order rank-one tensor and
resorts to the high order singular value decomposition
(HOSVD) algorithm to optimize the active and passive
beamforming vectors.

We show that our proposed TOT and KF solutions can reduce
the computational complexity, respectively, by 15 and 140
times, compared to the benchmark scheme of [7] with similar
SE performance under perfect channel state information (CSI)
assumption. Otherwise, when imperfect CSI is considered the
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TOT method shows a significant SE improvement compared
to the KF and the benchmark [7] methods.

Notation: Scalars, vector, matrices and tensors are denoted
(a), (a), (A) and (A), respectively. The superscripts {}T ,
{}∗, and {}H denote transpose, conjugate, and hermitian,
respectively. The operators ⊗, ⋄, ◦, ⊙ and ∠ are the Kronecker,
the Khatri-Rao, the outer product, the Hadamard products and
the angle of a complex value, respectively. vec(A) converts
A to a column vector by stacking its columns. The n-mode
product of a tensor X ∈ CI×J×K and a matrix A ∈ CI×R is
denoted by Y = X ×n A, n = 1, 2, 3.

II. SYSTEM MODEL

We consider a MIMO-IRS communication system, where
the BS has M antennas transmitting a single stream symbol
towards a UE with K antennas via an IRS having N reflecting
elements, which are adjusted by a controller connected to the
BS. Initially, Perfect CSI of all channels is assumed at the BS
(see Section IV for the effect of imperfect CSI). We further
assume there is no direct link between the BS and the UE.
The received signal r at the UE can be written as

r = wHGdiag(θ)Hqx+ n, (1)

where w ∈ CK×1 is the combiner, G ∈ CK×N is the channel
between the IRS and the UE, θ ∈ CN is the IRS phase shift
vector defined as θ

.
= [ejθ1 , . . . , ejθN ]T , where θn ∈ [−π, π]

represents the phase shift of the n-th reflecting element, H ∈
CN×M is the channel between the BS and the IRS, q ∈ CM×1

is the transmit precoder, x is the transmitted signal, with power
Pt, and n ∼ CN (0, σ2

n) is the additive white Gaussian noise
(AWGN) with zero mean and variance σ2

n.
Our goal is to maximize the signal-to-noise ratio (SNR) at

the UE subject to the IRS phase shifts, precoder, and combiner
constraints, which leads to the following optimization problem

max
w,q,θ

|(wHGdiag(θ)Hq)|2 (2)

s.t. ||w|| = ||q|| = 1 and θn ∈ [−π, π].

A classical solution to this problem was proposed in [7] and
related works, which relies on SVD-based steps applied to
the full MIMO channel matrices H and G to find their
dominant eigenmodes, from which the active beamforming
vectors (precoder q and combiner w), as well as the IRS phase
shift vector θ are determined.

III. PROPOSED APPROACHES

Here, we discuss our proposed low-complexity active
and passive beamforming design. We first derive a
Kronecker-based model for the involved channels and then
recast the resulting two-dimensional optimization problem as
a product of two smaller one-dimensional problems for each
channel dimension. Then, our two algorithms exploiting the
resulting optimization problem are derived.

A. Kronecker-structured Channel Factorization

A uniform rectangular array (URA) is deployed both at the
BS and the UE, where the BS is equipped with My antenna
elements along the y axis and Mz antenna elements along the

z axis, with M = MyMz being the total number of antenna
elements. Similarly, the UE has K = KyKz antenna elements,
where Ky and Kz are the number of elements along the y
axis and z axis, respectively. The element spacing between
antennas of the URAs is λ/2. At the BS side, the response of
the mth antenna element is defined as [18]

[a(ϕbs, θbs)]m = e−jπ[my sin θbs sinϕbs+mz cos θbs], (3)

where m = mz+(my−1)Mz with my ∈ [0, 1, . . . ,My − 1]
and mz ∈ [0, 1, . . . ,Mz − 1], θbs and ϕbs represent the
elevation of departure (EoD) and azimuth of departure (AoD),
respectively. Furthermore, define the spatial frequencies as
µbs = π sin θbs sinϕbs and ψbs = π cos θbs. The overall
array response in (3) can be written as a Kronecker
product between the associated horizontal and the vertical
components as a(µbs, ψbs) = ay(µbs) ⊗ az(ψbs) ∈
CM×1, where ay(µbs) is the horizontal steering vector
as ay(µbs) = [1, e−jµbs , . . . , e−j(My−1)µbs ] ∈ CMy×1,
and az(ψbs) is the vertical steering vector as az(ψbs) =
[1, e−jψbs , . . . , e−j(Mz−1)ψbs ] ∈ CMz×1. Note that in a
similar way, the IRS arrival, the UE, and IRS departure
channel steering vectors can be written as b(µirsA , ψirsA) =
by(µirsA) ⊗ bz(ψirsA), c(µue, ψue) = cy(µue) ⊗ cz(ψue) and
d(µirsD , ψirsD ) = dy(µirsD )⊗ dz(ψirsD ), respectively.

Under the previous definitions and assumptions, the channel
matrix H linking the BS to the IRS can be written as

H=

L∑
l=1

α
(l)
H [by(µ

(l)
irsA)⊗bz(ψ

(l)
irsA)][ay(µ

(l)
bs )⊗az(ψ

(l)
bs )]

T (4)

where L is the number of paths, and α
(l)
H ∼ CN (µ, σ)

is the complex gain of the lth path. Applying the property
(A⊗B)(C ⊗D) = AC ⊗BD, we can rewrite (4) as

H =

L∑
l=1

α
(l)
H [by(µ

(l)
irsA)a

T
y (µ

(l)
bs )]︸ ︷︷ ︸

H (l)

y ∈CNy×My

⊗ [bz(ψ
(l)
irsA)a

T
z (ψ

(l)
bs )]︸ ︷︷ ︸

H (l)

z ∈CNz×Mz

, (5)

or, compactly,
H =

L∑
l=1

H(l)
y ⊗H(l)

z . (6)

Similarly, following the same construction and definitions in
(4) and (5) the IRS-UE channel G can be written as

G =

R∑
r=1

α
(l)
G [cy(µ

(l)
ue )d

T
y (µ

(l)
irsD )]︸ ︷︷ ︸

G(l)

y ∈CKy×Ny

⊗ [cz(ψ
(l)
ue )d

T
z (ψ

(l)
irsD )]︸ ︷︷ ︸

G(l)

z ∈CKz×Nz

, (7)

and, analogously as in (6)

G =

L∑
l=1

G(l)
y ⊗G(l)

z . (8)

In practical scenarios, the channel shows less variation in the
vertical domain compared to the horizontal domain [19]. For
example, in THz communications the channels are dominated
by their line-of-sight (LoS) components, while some non-LoS
scenarios exhibit small angular spreads [3]. In such scenarios,
the vertical spatial frequencies of both H and G channels,
defined in (6) and (8), are strongly correlated, which implies
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reasonably assuming that H(1)
z ≈ · · · ≈ H(L)

z , and G(1)
z ≈

· · · ≈ G(L)
z . This leads to the following approximations

H ≈
( L∑
l=1

H(l)
y

)
︸ ︷︷ ︸

Hy

⊗ Hz = Hy ⊗Hz, (9)

G ≈
( L∑
l=1

G(l)
y

)
︸ ︷︷ ︸

Gy

⊗ Gz = Gy ⊗Gz. (10)

Otherwise stated, the involved MIMO channel matrices can be
factorized in terms of the Kronecker product of their respective
horizontal (y-domain) and vertical (z-domain) components.
Note that such a Kronecker-structured model is exact in a pure
LoS scenario, or when the non-LoS components are negligible.

B. Two-dimensional Active and Passive Beamforming
By adopting the Kronecker-product based MIMO channel

factorizations in (9) and (10), we can rewrite (1) as

r = wH(Gy ⊗Gz)diag(θ)(Hy ⊗Hz)qx+ n. (11)

To fully decouple the received signal as well as the
optimization problem (2) into horizontal and vertical
components, we impose a Kronecker product structure to
the active and passive beamforming vectors (i.e., precoder,
combiner, and IRS phase shifts) by defining

w
.
= wy ⊗wz, q

.
= qy ⊗ qz, θ

.
= θy ⊗ θz. (12)

Using these definitions, we simplify (11) to

r = sysz + n, (13)

where sy
.
= wH

y Gydiag(θy)Hyqy is the horizontal domain
desired signal component, and sz

.
= wH

z Gzdiag(θz)Hzqz is
the vertical domain desired signal component. From (13), the
SE expression can then be written as

SE = log2

(
1 +

|sysz|2

σ2
n

)
= log2

(
1 + SNRySNRz

)
, (14)

where we have defined SNRy = sys
∗
y/
√
σ2 and

SNRz = szs
∗
z/
√
σ2, as the horizontal and vertical SNRs,

respectively. Although imposing a Kronecker structure on
these beamforming vectors restricts the solution space, a
significant complexity reduction is achieved compared to the
conventional “full” design, especially for large IRS panels.
Exploiting the decoupled signal model in (13) two solutions
are now derived to find the two-dimensional beamforming sets
(wy,wz), (qy, qz), and (θy,θz).

C. Kronecker Factorization (KF) Method
From the factorization of the received signal in (13), the

full optimization problem (2) can be replaced by two smaller
optimization sub-problems along each domain, i.e.,

max
wy,qy,θy

|(wH
y Gydiag(θy)Hyqy)|2 (15)

s.t. ||wy|| = ||qy|| = 1 and θy ∈ [−π, π],

Algorithm 1: Kronecker factorization (KF) method

1 Compute the truncated SVD of Gy , Gz , Hy and Hz .
λgyugyv

H
gy

≈ Gy , λgzugzv
H
gz

≈ Gz ,
λhyuhyv

H
hy ≈ Hy and λhzuhzv

H
hz ≈ Hz .

2 Design the combiner as w = ugy ⊗ ugz .
3 Design the precoder as q = vhy ⊗ vhz .
4 Design the IRS phase shifts as
θ = −∠{[v∗

gy
⊙ uhy ]⊗ [vgz ⊙ uhz ]}

max
wz,qz,θz

|(wH
z Gzdiag(θz)Hzqz)|2 (16)

s.t. ||wz|| = ||qz|| = 1 and θz ∈ [−π, π].

individually maximizing the SNR in the y and z domains
implies maximizing the overall SNR (14). The solution to the
individual problems (15) and (16) can be obtained from any
state-of-the-art method. In this work, we consider the method
of [7] but applied in each channel domain. The steps of the
KF solution are detailed in Algorithm 1.

D. Third-Order Tensor (TOT) Method

The second method exploits the horizontal and vertical
factorizations of the received signal from a tensor modeling
perspective. Starting from (13), let us rewrite sy and sz
components of the received signal as

sy = wH
y Gydiag(θy)Hyqy = (qTy ⊗wH

y )F yθy,

sz = wH
z Gzdiag(θz)Hzqz = (qTz ⊗wH

z )F zθz,

where we have defined F y
.
= HT

y ⋄ Gy ∈ CKyMy×Ny

and F z
.
= HT

z ⋄ Gz ∈ CKzMz×Nz as the combined y
and z domains Khatri-Rao channels, respectively. We can
rearrange the elements of F y and F z in third-order tensors
Fy ∈ CKy×My×Ny and Fz ∈ CKz×Mz×Nz via the mappings
[Fy]ky,my,ny

.
= [F y](ky−1)My+my,ny

and [Fz]kz,mz,nz

.
=

[F z](kz−1)Mz+mz,nz
, where kt = 1, . . . ,Kt, mt = 1, . . . ,Mt,

nt = 1, . . . , Nt, t ∈ {y, z}. The set of active and passive
beamforming vectors that individually maximize the horizontal
(y-domain) and vertical (z-domain) SNRs can be found by
independently solving the following problems

max
wy,qy,θy

||Fy ×1 wy ×2 qy ×3 θy||2 (17)

s.t. ||wy|| = ||qy|| = 1 and θy ∈ [−π, π]

max
wz,qz,θz

||Fz ×1 wz ×2 qz ×3 θz||2 (18)

s.t. ||wz|| = ||qz|| = 1 and θz ∈ [−π, π]

These problems can be solved by applying the HOSVD [20]
to the tensors Fy and Fz . The solutions to wy qy , and θy
correspond respectively to the 1-mode, 2-mode, and 3-mode
dominant left singular vectors of Fy . Likewise, wz qz , and
θz are found as the 1-mode, 2-mode, and 3-mode dominant
left singular vectors of Fz (we refer the reader to [20] for
further details on the HOSVD algorithm). The steps of the
TOT method are summarized in Algorithm 2.
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Algorithm 2: Third-order tensor (TOT) method

1 Compute the HOSVD of Fy and Fz to obtain
{wy, qy,θy} and {wz, qz,θz}, respectively.

2 Design the combiner as w = wy ⊗wz .
3 Design the precoder as q = q∗

y ⊗ q∗
z .

4 Design the IRS phase shifts as θ = −∠[θy ⊗ θz].

TABLE I: Computational complexity

Solution Complexity
Baseline [7] O(N(M +K))

KF O(Ny(My +Ky) +Nz(Mz +Kz))
TOT O(3(KyMyNy +KzMzNz))

E. Complexity Analysis
Both KF and TOT methods rely on (truncated SVD-based)

rank-one approximation procedures. Note that a single
low-rank matrix approximation has a complexity O(ijv)
[21], where i is the number of rows, j is the number of
columns and v is the rank. For the rank-one approximation,
this complexity is reduced to O(ij). In the baseline solution
of [7], the precoder, combiner, and IRS phase shifts are
determined from the dominant left singular vectors of the full
channel matrices H and G, resulting in O(N(M +K)). The
KF method solves the beamforming problem for each channel
dimension separately, which implies solving four rank-one
matrix approximation procedures to Gy , Gz , Hy and Hz .
Thus, the overall complexities of the horizontal and vertical
problems are respectively given as O (Ny(My + Ky)) and
O(Nz(Mz+Kz)). Finally, the complexity of the TOT method
corresponds to that of computing two independent HOSVDs
for the horizontal and vertical optimization problems, where
the individual HOSVDs have complexities O(3KyMyNy)
and O(3KzMzNz), respectively. The complexities are
summarized in Table I.

IV. SIMULATION RESULTS

We consider a MIMO communication system where the BS
is equipped with M = 128 antenna elements, composed of
My = 16 and Mz = 8 along horizontal and vertical domains,
serves a single user with K = 16 antenna elements composed
of Ky = Kz = 4 antenna elements along horizontal and
vertical domains, respectively. The communication is assisted
by an IRS equipped with N = 100 reflecting elements
composed of Ny = Nz = 10 reflecting elements along
horizontal and vertical domains, respectively. The elevation
of arrival (EoA) and the EoD are generated from the uniform
distribution θbs, θirsA , θirsD , θue ∼ U [90◦−δ, 90◦+δ], where δ
is the elevation spread. Also, the azimuth of arrival (AoA)
and the AoD are generated from the uniform distribution
ϕue, ϕirsA , ϕirsD , ϕue ∼ U [−60◦, 60◦]. Also, 4 paths are
considered for G and H . For comparison, the SVD-based
joint active and passive beamforming algorithm proposed in
[7] is used as the baseline solution serving as a reference for
comparison.

Fig. 1 shows the performance of the proposed algorithms
varying the SNR for different elevation spread values. Note
that the approximation error associated with the separable
channel structure assumption in (9) and (10) increases as a

Fig. 1: SE of the proposed methods compared to the baseline
[7] for δ = 2.5◦ and δ = 10◦, varying the SNR.

Fig. 2: Computational complexity of the proposed solutions
and the baseline [7] for fixed M and K while varying N .

function of the elevation spread. The results show that the
proposed KF and TOT solutions have a slight performance
degradation compared with the baseline method of [7]. For
example, in Fig 1a, the performance degradation is 0.3
bit/s/Hz, while in Fig 1b, it is equal to 2.3 bit/s/Hz. Indeed,
since the optimizations problems in (17) and (18) are the same
as the ones in (15) and (16), respectively, both solutions have
the same SE. It is important to highlight that, in scenarios
where the approximations in (9) and (10) become exact,
the imposed Kronecker structure of the passive and active
beamforming vectors in (12) does not degrade the SE, i.e.,
the proposed KF and TOT solutions achieve the same SE as
the baseline solution [7].

Fig. 2 shows the computational complexity as a function
of the number of IRS reflecting elements. By exploiting
the Kronecker factorization structure of the channels, the
KF and TOT solutions have lower slopes when compared
to the baseline algorithm [7]. Although KF and TOT have
small degradation in performance, they can significantly
reduce the computational complexity when moderate or large
numbers of IRS elements are considered and, as shown
previously, depending on the scenario they can have very close
performance compared to the baseline solution. For example,
for 1000 reflecting elements the baseline solution [7] is 140
and 15 times more complex than the proposed KF and TOT
solutions, respectively.

Figure 3 depicts the SE of the proposed algorithms when
channel estimation error is taken into account, considering
SNR = 20dB. To this end, let F̂

.
= HT ⋄ G + Z be the
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Fig. 3: SE of the proposed methods and the baseline method
of [7] under imperfect CSI.

noisy estimate of the combined (Khatri-Rao) channel obtained
after LS estimation and matched filtering with the known
orthogonal pilots and optimal DFT IRS phase shift matrices
(details can be found in [22]), where Z ∼ CN (0, σ2

z) accounts
for the channel estimation error. Also, define F̂ y and F̂ z

as the noisy estimates of the y and z channel components
of F̂ (obtained according to [14]). The baseline method of
[7] optimizes the beamforming vectors from the estimates
of H and G obtained after a Khatri-Rao factorization step
applied to the noisy estimate F̂ . The KF method relies
on the decoupled estimates of Ĥy, Ĥz, Ĝy , Ĝz obtained
after Khatri-Rao and Kronecker factorization steps, while the
TOT method operates directly on the estimates F̂ y and F̂ z ,
avoiding the Khatri-Rao factorization step. The perfect CSI
curve corresponds to the baseline method [7] assuming perfect
CSI knowledge. As shown in Fig. 3, for higher values of σ2

z

TOT outperforms the baseline and the KF methods due to the
processing required to obtain F̂ y and F̂ z which rejects part
of the noise. The KF has the worst performance due to the
scaling ambiguities in the Khatri-Rao factorization step that
propagates to the subsequent stage where the horizontal and
vertical channel matrices are estimated. Hence, although TOT
is more computationally complex than KF, under moderate
channel estimation error, it has a better SE performance.
For example, assuming σ2

z = −8dB the TOT, baseline, and
KF solutions present a SE gap of 1.6, 7, and 8.2 bits/s/Hz
compared to the perfect CSI curve. These results show the
involved tradeoffs between complexity and performance under
imperfect CSI.

V. CONCLUSION

We proposed two low-complexity joint active and passive
beamforming designs for IRS-assisted MIMO systems. Our
methods exploit the geometrical channel structure to split the
involved optimization problems into vertical and horizontal
domains. The proposed KF and TOT algorithms significantly
reduce the computational complexity with negligible SE
degradation compared to the reference method under perfect
CSI, while the TOT method provides the best SE performance
when channel estimation noise is taken into account in the
proposed optimization due to more efficient noise rejection.
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