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Abstract—Conventional tensor direction-of-arrival (DOA) es-
timation methods for sparse arrays apply canonical polyadic
decomposition (CPD) to the high-order coarray covariance tensor
for retrieving angle information. However, due to the low conver-
gence rate of CPD-based algorithms for high-order tensors, these
methods suffer from a high computation cost. To address this
issue, a sub-Nyquist tensor train decomposition (SubTTD)-based
DOA estimation method is proposed for a three-dimensional (3-
D) sparse array, where an augmented virtual array is derived
from the sub-Nyquist tensor statistics. To reduce computational
complexity of processing the 6-D coarray covariance tensor, the
proposed SubTTD model efficiently decomposes it into a train of
head matrix, 3-D core tensors, and tail matrix. Based on that, a
core tensor decomposition and a change-of-basis transformation
for the head matrix are designed to retrieve canonical polyadic
factors of the coarray covariance tensor for DOA estimation. The
computational efficiency of the proposed method is theoretically
analyzed, and its effectiveness is verified via simulations.

Keywords— Coarray covariance tensor, DOA estimation,
sparse array, sub-Nyquist tensor train decomposition.

I. INTRODUCTION

THE deployment of multi-dimensional sparse arrays for
super-resolution and high-accuracy direction-of-arrival

(DOA) estimation with a reduced system overload has gained
increasing popularity [1–5]. To exploit the structural charac-
teristics embedded in multi-dimensional signals sampled at
the sub-Nyquist rate, the emerging tensor-based methods have
modeled these signals as sub-Nyquist tensors, and then derived
augmented virtual arrays for coarray tensor processing [6–
9]. Nevertheless, the typical canonical polyadic decomposition
(CPD) operation on the corresponding high-order coarray
covariance tensor has a low convergence rate, resulting in
a high computational complexity for DOA estimation. Thus,
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devising a computationally efficient coarray tensor-based DOA
estimation method is an urgent and important task.

To efficiently process a high-order tensor, the emerging
tensor train decomposition model transforms it into a train
of interconnected low-order core tensors with a reduced di-
mensionality [10]. These core tensors maintain the spatial
information of the original high-order tensor, while facilitating
signal processing tasks with a minimum information loss.
Hence, tensor train decomposition has been utilized for har-
monic retrieval [11], image recovery [12], hyperspectral image
denoising [13], channel estimation [14], and video tracking
[15], etc. However, the existing tensor train decomposition
techniques have not considered the DOA estimation problem.
Moreover, in the context of sparse array processing, the canon-
ical polyadic (CP) factors of the coarray covariance tensor are
required for DOA estimation, which however, are not explicitly
included in the conventional tensor train decomposition model.
Therefore, developing a suitable tensor train decomposition
model for sparse array DOA estimation remains challenging.

In this letter, a sub-Nyquist tensor train decomposition
(SubTTD)-based DOA estimation method is proposed with
a high computational efficiency. First, an augmented virtual
cubic array is derived from the sub-Nyquist tensor statistics
of a three-dimensional (3-D) sparse array. Then, a SubTTD
model is formulated to decompose the corresponding 6-D
coarray covariance tensor into a train of head matrix, 3-D
core tensors, and tail matrix. Based on the algebraic relevance
between the SubTTD and CPD structures, the interconnected
SubTTD head matrix and core tensors are converted into the
CP factors of the coarray covariance tensor, leading to an
efficient DOA estimation. It is proved that the computational
complexity of the proposed method is reduced by several times
compared to the CPD-based method. Simulation results verify
that the proposed method is computationally faster than the
competing methods with a better estimation accuracy.

II. SUB-NYQUIST TENSOR MODEL FOR SPARSE ARRAY

Among diverse types of sparse arrays [16–19], the Nested
Coprime Array with Compressed Inter-element Spacing
(NCACIS) [16] can derive a contiguous virtual array. Follow-
ing its framework, as shown in Fig. 1, we consider the cubic
version of NCACIS1, namely, cubic NCACIS, which consists
of a dense uniform cubic array (UCA) M with Mx×My×Mz

1The proposed sub-Nyquist tensor model can be generalized to other typical
sparse arrays. For those partially augmentable arrays, such as coprime array,
we can either extract the contiguous part of the corresponding discontinuous
virtual array [20, 21] or perform interpolation [22, 23] for coarray processing.
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Fig. 1. The geometry of the considered cubic NCACIS.

sensors and a sparse UCA N with Nx ×Ny ×Nz sensors.
Here, (Mx, Nx), (My, Ny) and (Mz, Nz) are pairs of coprime
integers. The inter-element spacing for the dense UCA M is a
half-wavelength d, whereas the inter-element spacings for the
sparse UCA N along the x, y, z-axes are Mxd, Myd, and Mzd,
respectively. As such, the sensors of M and N only overlap at
the origin position (0, 0, 0), and the total number of sensors
in the cubic NCACIS is MxMyMz+NxNyNz−1.

Assume that K uncorrelated far-field narrowband sources
impinge on the cubic NCACIS from directions (θk, ϕk), where
θk ∈ [−π, π] (measured counterclockwise relative to the x-
axis) and ϕk ∈ [−π

2 ,
π
2 ] (measured bottom-to-up relative to

the x-y plane) are the azimuth and elevation angles of the k-th
source, k ∈ {1, 2, · · · ,K}. To preserve the multi-dimensional
structure of cubic NCACIS signals, the total T snapshots of
M and N are represented as a pair of 4-D sub-Nyquist tensors

XM=

K∑
k=1

aMx(k)◦aMy(k)◦aMz(k)◦sk+NM∈CMx×My×Mz×T,

XN=

K∑
k=1

aNx(k)◦aNy(k)◦aNz(k)◦sk+NN∈CNx×Ny×Nz×T,

(1)

where aMx
(k) =

[
1, e−ȷπµk , · · · , e−ȷπ(Mx−1)µk

]T
, aMy

(k) =[
1, e−ȷπνk , · · · , e−ȷπ(My−1)νk

]T
, aMz

(k) =
[
1, e−ȷπωk , · · · ,

e−ȷπ(Mz−1)ωk
]T

respectively denote the steering vectors along
the x, y, z-axes of M, and aNx

(k) =
[
1, e−ȷMxπµk , · · · ,

e−ȷπ(Nx−1)Mxµk
]T

, aNy
(k)=

[
1, e−ȷπMyνk , · · ·, e−ȷπ(Ny−1)Myνk

]T
,

aNz
(k) =

[
1, e−ȷπMzωk, · · ·, e−ȷπ(Nz−1)Mzωk

]T
respectively de-

note the steering vectors along the x, y, z-axes of N with
µk=cosϕk cos θk, νk=cosϕk sin θk, and ωk=sinϕk. Here,
sk=[sk(1), sk(2), · · · , sk(T )]T is the signal of the k-th source,
NM, N N are the additive Gaussian white noise tensors,
i.e., NM(:,:,:,t) ∼ CN (0, σ2

nI), N N(:,:,:,t) ∼ CN (0, σ2
nI),

∀t ∈ [1, T ], σ2
n is the noise power, I denotes an identity tensor,

ȷ =
√
−1, ◦ denotes the outer product, and (·)T denotes the

transpose operator.
To derive a virtual UCA, a 6-D cross-correlation tensor R=

E
{

1
T XM

4
×
4
X ∗

N

}
∈CMx×My×Mz×Nx×Ny×Nz can be calculated as

R=

K∑
k=1

σ2
sk
aMx

(k)◦aMy
(k)◦aMz

(k)◦a∗
Nx
(k)◦a∗

Ny
(k)◦a∗

Nz
(k)+N .

(2)
Here, σ2

sk
= E

{
1
T s

T
k s

∗
k

}
is the power of the k-th source,

N =E
{

1
T NM

4
×
4
N ∗

N

}
is an all-zero cross-correlation noise

tensor except the (1, 1, 1, 1, 1, 1)-th element being σ2
n, E{·}

denotes the statistical expectation, (·)∗ denotes the conjugation

operator, and A
j
×
i
B represents the contraction between the

i-th dimension of A and the j-th dimension of B. In practice,
R is approximated by the sample cross-correlation tensor

R̂= 1
T XM

4
×
4
X ∗

N.

III. PROPOSED SUBTTD METHOD FOR DOA ESTIMATION

A. Virtual Cubic Array Derivation

To derive an augmented virtual array from the sub-Nyquist
tensor statistics for coarray processing, the cross-correlation
tensor R can be properly unfolded to combine its dimensions
associated with angle information along the same directions.
Specifically, we combine the dimension pairs {1, 4}, {2, 5},
{3, 6} of R, i.e., R{1,4},{2,5},{3,6}, to yield a 3-D tensor

U=

K∑
k=1

σ2
sk

[
a∗
Nx
(k)⊗ aMx

(k)
]
◦
[
a∗
Ny
(k)⊗ aMy

(k)
]

◦
[
a∗
Nz
(k)⊗ aMz

(k)
]
+Q∈CMxNx×MyNy×MzNz ,

(3)

where Q ≜ N {1,4},{2,5},{3,6} is a 3-D noise tensor, and
⊗ denotes the Kronecker product. Here, a∗

Nx
(k) ⊗ aMx

(k),
a∗
Ny
(k)⊗ aMy

(k), and a∗
Nz
(k)⊗ aMz

(k) respectively generate
consecutive difference coarrays along the x, y, z-axes. As
such, a contiguous virtual UCA V = {(xV, yV, zV)|xV ∈
[Mx−MxNx,Mx− 1]d, yV ∈ [My −MyNy,My − 1]d, zV ∈
[Mz−MzNz,Mz−1]d} can be derived.

Accordingly, rearranging the elements in U to match the
locations of the virtual sensors in V yields the equivalent
second-order signals of V, which can be modelled as a 3-D
coarray tensor

V =

K∑
k=1

σ2
sk
bx(k) ◦ by(k) ◦ bz(k) +Z. (4)

Here, bx(k) = [e−ȷπ(Mx−MxNx)µk , e−ȷπ(Mx−MxNx+1)µk , · · · ,
e−ȷπ(Mx−1)µk ]T, by(k)=[e−ȷπ(My−MyNy)νk, e−ȷπ(My−MyNy+1)νk ,
· · · , e−ȷπ(My−1)νk ]T, and bz(k) = [e−ȷπ(Mz−MzNz)ωk ,
e−ȷπ(Mz−MzNz+1)ωk , · · ·, e−ȷπ(Mz−1)ωk ]T respectively denote
the steering vectors along the x, y, z-axes of V, and Z is the
corresponding noise tensor.

The derived coarray tensor V now enables the Nyquist-
matched DOA estimation. In particular, a 6-D coarray co-
variance tensor of the coarray tensor V , i.e., R̄=VT◦V∗ ∈
CMxNx×MyNy×MzNz×MxNx×MyNy×MzNz , can be calculated as

R̄=

K∑
k=1

σ4
sk
bx(k)◦by(k)◦bz(k)◦b∗x(k)◦b∗y(k)◦b∗z(k)+Z̄

≜D̄×1Bx×2By×3Bz×4B
∗
x×5B

∗
y×6B

∗
z+Z̄,

(5)

where D̄ ∈ CK×K×K×K×K×K is a coefficient tensor
with [σ4

s1 , σ
4
s2 , · · ·, σ

4
sK ] on its diagonal, Bx =

[bx(1), bx(2), · · · , bx(K)]∈CMxNx×K , By = [by(1), by(2),
· · ·, by(K)] ∈ CMyNy×K , Bz = [bz(1), bz(2), · · ·, bz(K)] ∈
CMzNz×K are the CP factor matrices, and ×i denotes the
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Fig. 2. Illustration of the proposed SubTTD model.

mode-i tensor-matrix product. Here, Z̄=
∑K

k=1

∑K
k′=1,k′ ̸=k

E
{

1
T 2 s

H
k (s

T
k s

∗
k′)sk′

}
bx(k) ◦ by(k) ◦ bz(k) ◦ b∗x(k′) ◦ b∗y(k′) ◦

b∗z(k
′)+ZT◦Z∗ is a residual tensor, where the cross-terms

between independent signals of different sources equal to
zeros, whereas the residual noise ZT ◦Z∗ with only one
non-zero element remains.

B. Sub-Nyquist Tensor Train Formulation

Since the angle information is explicitly embedded in the
CP factors of R̄ in (5), it is necessary to retrieve these CP
factors for DOA estimation. However, with the increased order
of tensors, the CPD-based algorithms become increasingly
difficult to converge. Thus, it will be time consuming to
directly apply CPD to the 6-D coarray covariance tensor
R̄. In this regard, we propose a SubTTD model to reduce
dimensionality of the coarray covariance tensor with a train
of matrices and low-order tensors, based on which an efficient
retrieval of the CP factors can be guaranteed.

As depicted in Fig. 2, the SubTTD represents the signal
component of R̄ as the interconnection of matrices and 3-D
tensors, following a tensor train decomposition as

R̄ = G1

1
×
2
G2

1
×
3
G3

1
×
4
G4

1
×
5
G5

1
×
6
G6 + Z̄, (6)

where G1 ∈CMxNx×K is the head matrix, G6 ∈CK×MzNz is
the tail matrix, and G2 ∈ CK×MyNy×K , G3 ∈ CK×MzNz×K ,
G4 ∈ CK×MxNx×K , G5 ∈ CK×MyNy×K are core tensors
representing the middle four carriages. The proposed SubTTD
model in (6) can be solved by extracting dominant singular
matrix subspaces for tensor train factor recovery [10]. Specifi-
cally, the head matrix G1 can be calculated from the truncated
SVD [R̄]1=G1Λ1V1, where [R̄]1∈CMxNx×MxNxM

2
yN

2
yM

2
zN

2
z

is the mode-1 unfolding of R̄, Λ1 ∈ CK×K is the diag-
onal matrix with K dominant singular values, and V1 ∈
CK×MxNxM

2
yN

2
yM

2
zN

2
z is the right singular matrix. Then, the

remaining product Λ1V1 ∈ CK×MxNxM
2
yN

2
yM

2
zN

2
z is reshaped

into an auxiliary matrix C2∈CMyNyK×MxNxMyNyM
2
zN

2
z . Ap-

plying the truncated SVD to C2 yields C2=U2Λ2V2, where
U2 ∈ CMyNyK×K is the left singular matrix, Λ2 ∈ CK×K

is the singular value matrix, and V2∈CK×MxNxMyNyM
2
zN

2
z is

the right singular matrix. Accordingly, the core tensor G2 ∈
CK×MyNy×K can be obtained by reshaping U2. Similarly, the
SubTTD factors Gr can be sequentially generated from the
left singular matrices Ur, r = 3, 4, · · · , 6.

Different from the direct CPD on the coarray covariance
tensor R̄ which unfolds it along all dimensions to find the
corresponding CP factors in an iterative loop, the proposed

Algorithm 1 SubTTD-based DOA Estimation
Input: Sub-Nyquist tensors XM and X N
Output: Estimated DOAs {(θk, ϕk), k = 1, 2, · · · ,K}

1: Derive the cross-correlation tensor R (2), the coarray tensor V
(4), and the coarray covariance tensor R̄ (5);

2: Compute the Truncated SVD on [R̄]1 = G1Λ1V1 to obtain the
head matrix G1;

3: for r = 2, 3, · · · , 6 do
4: Reshape the product Λr−1Vr−1 into an auxiliary matrix Cr;
5: Compute the truncated SVD on Cr to yield {Ur,Λr,Vr};
6: Derive core tensors G2, · · · ,G5 and tail matrix G6 from Ur;
7: end for
8: Perform CPD on the core tensor G2 to obtain D̂1 and B̂y (7);
9: Compute B̂x = G1 × D̂−1

1 ;
10: Retrieve {(θk, ϕk), k = 1, 2, · · · ,K} from B̂x and B̂y .

SubTTD solution performs the non-iterative truncated SVD
and singular matrix reshaping in a sequential way to generate
the SubTTD factors. Meanwhile, thanks to the train structure
of the interconnected SubTTD factors, certain CP factor in
(5) and SubTTD factor in (6) corresponding to the same
dimension of R̄ are embedded with angle information along
the same direction. Specifically, the CP factor matrix Bx

and the SubTTD head matrix G1 corresponding to the first
dimension of R̄ are embedded with angle information along
the x-axis, while the CP factor matrix By and the SubTTD
core tensor G2 corresponding to the second dimension of R̄
are embedded with angle information along the y-axis. Hence,
the SubTTD factors G1,G2 can be converted to the CP factors
Bx,By for DOA estimation with the least computation cost.

C. CP Factor Retrieval for Sub-Nyquist DOA Estimation

According to the algebraic relevance between the sequential
truncated SVD-based solution for tensor train decomposition
and the alternating least squares (ALS)-based solution for CPD
[24], both the CP factor matrix Bx and the SubTTD head
matrix G1 are calculated from the mode-1 unfolding of R̄,
but with different scaling and permutation. Hence, Bx can be
obtained by multiplying G1 with a change-of-basis matrix.
Meanwhile, the decomposition of the core tensor G2 can not
only provide such a change-of-basis matrix, but also yield the
CP factor matrix By . Therefore, we perform a CPD on G2 as

G2 = J ×1 D̂1 ×2 B̂y ×3 D̂2, (7)

where J ∈CK×K×K has scaling coefficients [λ1, λ2, · · · , λK ]
on its diagonal, D̂1 ∈ CK×K , D̂2 ∈ CK×K are the change-
of-basis matrices corresponding to the first and the second
dimensions of R̄, and B̂y ∈ CMyNy×K is the estimation of
the CP factor matrix By . After solving the core tensor CPD
(7) through the ALS approach2, the CP factor matrix Bx can
be estimated as B̂x = G1 × D̂−1

1 .
According to the definition of the CP factor matrices in

(5), µk and νk can be estimated from the phase of B̂x

and B̂y . Then, based on the relationship between (µk, νk)
and (θk, ϕk) in Section II, the closed-form solution to the

2Here we implement the ALS approach as an illustrative example. Never-
theless, other optimization approaches can also be used to solve the CPD of
G2 (7). For more details, please see [25] and the references therein.
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Fig. 3. Estimation performance of the proposed SubTTD-based
method for 12 sources, SNR = 20 dB, T = 800.

azimuth and elevation angles of the k-th source can be
obtained as θ̂k = arctan

(
ν̂k/µ̂k

)
, ϕ̂k = arccos

(√
µ̂2
k + ν̂2k

)
,

∀k = 1, 2, · · · ,K. The steps of the proposed SubTTD-based
DOA estimation method are summarized in Algorithm 1.

IV. PERFORMANCE ANALYSIS

A. Computational Complexity

The proposed SubTTD-based DOA estimation method in-
volves the sub-Nyquist tensor train formulation and the core
tensor CPD procedures, whose computational complexities
are O(K2MxNxM

2
yN

2
yM

2
zN

2
z ) and O(K3MyNyLG), re-

spectively. Here, LG denotes the number of iterations for
the CPD on the core tensor G2 in (7). Since the CPD
on a 3-D tensor normally converges within hundreds of
iterations [25], the computational complexity of the pro-
posed method is O(K2MxNxM

2
yN

2
yM

2
zN

2
z ). In contrast, the

CPD-based method [6] has a computational complexity of
O(KM2

xN
2
xM

2
yN

2
yM

2
zN

2
zLR̄), where LR̄ denotes the num-

ber of iterations for the direct CPD on the 6-D coarray covari-
ance tensor R̄ with LR̄ ≫ K. As such, the computational
complexity of the CPD-based method is MxNxLR̄/K-times
higher than that of the proposed SubTTD-based method. Thus,
the proposed method enjoys a significant improvement in
the computational efficiency thanks to the designed SubTTD-
based coarray covariance tensor processing principle.

B. Number of Identifiable Sources

The number of identifiable sources of the proposed method
is determined by the uniqueness condition of CP factor esti-
mations from tensor train decompositions [26]. Specifically,
the CP factor matrices can be uniquely retrieved from the
proposed SubTTD model if and only if r(Bx) = r(Bz) = K,
r(By) ⩾ 2, κ(By) ⩾ 2, where r(·) denotes the matrix rank,
and κ(·) denotes the Kruskal’s rank. This leads to K ⩽
min(MxNx,MzNz) for the proposed method, which indicates
the upper bound for the number of identifiable sources.

V. SIMULATION RESULTS

We consider a cubic NCACIS with Mx=My=Mz =3 and
Nx=Ny=Nz=4. The derived virtual UCA V has a size of
12 × 12 × 12, and the number of identifiable sources is 12.
First, we demonstrate the performance of the proposed method
for estimating 12 sources in Fig. 3, where all the sources can
be successfully located. Then, the estimation accuracy of the

(a) (b)

Fig. 4. Estimation accuracy comparison. (a) RMSE versus
SNR, T = 150; (b) RMSE versus snapshots, SNR = −5 dB.

(a) (b)

Fig. 5. Computation time comparison. (a) RMSE versus SNR,
T = 150; (b) RMSE versus snapshots, SNR = −5 dB.

proposed method is compared to those of the coarray ESPRIT-
based method and CPD-based method [6] in Fig. 4, where the
root-mean-square error (RMSE) is used as the performance
metric. For each scenario, 1, 000 Monte Carlo trials are
performed. Assume that there are two distinct sources, whose
azimuth and elevation angles are both randomly selected
within [15◦, 60◦] for each trial. It is clear that the proposed
method achieves a better estimation accuracy in comparison
with the coarray ESPRIT-based method, whose matrix-based
processing fails to exploit the structural signal characteristics.
Moreover, compared to the CPD-based method, the estimation
accuracy of the proposed SubTTD-based method is slightly
higher since it can preserve sufficient angle information while
reducing the dimensionality of the coarray covariance tensor.

To illustrate the computational efficiency of the proposed
SubTTD-based method, the computation time of the tested
methods averaged from all Monte Carlo trials is depicted in
Fig. 5. Obviously, the proposed method is computationally
much faster than the CPD-based method, which corroborates
the effectiveness of the SubTTD model to reduce computation
cost for coarray tensor processing. Furthermore, benefited
from the imposed dimensionality reduction strategy for the
coarray covariance tensor, the proposed tensor-based process-
ing method is even computationally faster than the coarray
ESPRIT-based method with matrix-based signal processing.

VI. CONCLUSION

We proposed a SubTTD-based DOA estimation method for
the cubic NCACIS in this letter. The formulated SubTTD
model efficiently decomposes the high-order coarray covari-
ance tensor into interconnected matrices and lower-order core
tensors for retrieving the CP factors. This enables the high
efficient DOA estimation with a better accuracy compared to
competing matrix-based and tensor-based methods.
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